3 resultados para 1984: Hot Dogs and Croissants

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hot-spot phenomenon is a relatively frequent problem occurring in current photovoltaic generators. It entails both a risk for the photovoltaic module’s lifetime and a decrease in its operational efficiency. Nevertheless, there is still a lack of widely accepted procedures for dealing with them in practice. This paper presents the IES–UPM observations on 200 affected photovoltaic modules. Visual and infrared inspection, as well as electroluminescence, peak power rating and operating voltage tests have been carried out. Thermography under steady state conditions and photovoltaic module operating voltage, both at normal photovoltaic system operating conditions, are the selected methods to deal in practice with hot-spots. The temperature difference between the hot-spot and its surroundings, and the operating voltage differences between affected and non-affected photovoltaic modules are the base for establishing defective criteria, at the lights of both lifetime and operating efficiency considerations. Hot-spots temperature gradients larger than 20 °C, in any case, and larger than 10 °C when, at the same time, voltage operating losses are larger than the allowable power losses fixed at the photovoltaic module warranties, are proposed as rejecting conditions for routine inspections under contractual frameworks. The upper threshold of 20 °C is deduced for temperate climates from the basic criterion of keeping absolute hot-spot temperatures below 20 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between pairs of individuals is an important topic in many areas of population and quantitative genetics. It is usually measured as the proportion of thegenome identical by descent shared by the pair and it can be inferred from pedigree information. But there is a variance in actual relationships as a consequence of Mendelian sampling, whose general formula has not been developed. The goal of this work is to develop this general formula for the one-locus situation,. We provide simple expressions for the variances and covariances of all actual relationships in an arbitrary complex pedigree. The proposed method relies on the use of the nine identity coefficients and the generalized relationship coefficients; formulas have been checked by computer simulation. Finally two examples for a short pedigree of dogs and a long pedigree of sheep are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The planar and axisymmetric variable-density flows induced in a quiescent gas by a concentrated source of momentum that is simultaneously either a source or a sink of energy are investigated for application to the description of the velocity and temperature far fields in laminar gaseous jets with either large or small values of the initial jet-to-ambient temperature ratio. The source fluxes of momentum and heat are used to construct the characteristic scales of velocity and length in the region where the density differences are of the order of the ambient density, which is slender for the large values of the Reynolds number considered herein. The problem reduces to the integration of the dimensionless boundary-layer conservation equations, giving a solution that depends on the gas transport properties but is otherwise free of parameters. The boundary conditions at the jet exit for integration are obtained by analysing the self-similar flow that appears near the heat source in planar and axisymmetric configurations and also near the heat sink in the planar case. Numerical integrations of the boundary-layer equations with these conditions give solutions that describe accurately the velocity and temperature fields of very hot planar and round jets and also of very cold plane jets in the far field region where the density and temperature differences are comparable to the ambient values. Simple scaling arguments indicate that the point source description does not apply, however, to cold round jets, whose far field region is not large compared with the jet development region, as verified by numerical integrations