502 resultados para PAG
Resumo:
Context-sensitive analysis provides information which is potentially more accurate than that provided by context-free analysis. Such information can then be applied in order to validate/debug the program and/or to specialize the program obtaining important improvements. Unfortunately, context-sensitive analysis of modular programs poses important theoretical and practical problems. One solution, used in several proposals, is to resort to context-free analysis. Other proposals do address context-sensitive analysis, but are only applicable when the description domain used satisfies rather restrictive properties. In this paper, we argüe that a general framework for context-sensitive analysis of modular programs, Le., one that allows using all the domains which have proved useful in practice in the non-modular setting, is indeed feasible and very useful. Driven by our experience in the design and implementation of analysis and specialization techniques in the context of CiaoPP, the Ciao system preprocessor, in this paper we discuss a number of design goals for context-sensitive analysis of modular programs as well as the problems which arise in trying to meet these goals. We also provide a high-level description of a framework for analysis of modular programs which does substantially meet these objectives. This framework is generic in that it can be instantiated in different ways in order to adapt to different contexts. Finally, the behavior of the different instantiations w.r.t. the design goals that motivate our work is also discussed.
Resumo:
The control part of the execution of a constraint logic program can be conceptually shown as a search-tree, where nodes correspond to calis, and whose branches represent conjunctions and disjunctions. This tree represents the search space traversed by the program, and has also a direct relationship with the amount of work performed by the program. The nodes of the tree can be used to display information regarding the state and origin of instantiation of the variables involved in each cali. This depiction can also be used for the enumeration process. These are the features implemented in APT, a tool which runs constraint logic programs while depicting a (modified) search-tree, keeping at the same time information about the state of the variables at every moment in the execution. This information can be used to replay the execution at will, both forwards and backwards in time. These views can be abstracted when the size of the execution requires it. The search-tree view is used as a framework onto which constraint-level visualizations (such as those presented in the following chapter) can be attached.
Resumo:
We present a generic preprocessor for combined static/dynamic validation and debugging of constraint logic programs. Passing programs through the preprocessor prior to execution allows detecting many bugs automatically. This is achieved by performing a repertoire of tests which range from simple syntactic checks to much more advanced checks based on static analysis of the program. Together with the program, the user may provide a series of assertions which trigger further automatic checking of the program. Such assertions are written using the assertion language presented in Chapter 2, which allows expressing a wide variety of properties. These properties extend beyond the predefined set which may be understandable by the available static analyzers and include properties defined by means of user programs. In addition to user-provided assertions, in each particular CLP system assertions may be available for predefined system predicates. Checking of both user-provided assertions and assertions for system predicates is attempted first at compile-time by comparing them with the results of static analysis. This may allow statically proving that the assertions hold (Le., they are validated) or that they are violated (and thus bugs detected). User-provided assertions (or parts of assertions) which cannot be statically proved ñor disproved are optionally translated into run-time tests. The implementation of the preprocessor is generic in that it can be easily customized to different CLP systems and dialects and in that it is designed to allow the integration of additional analyses in a simple way. We also report on two tools which are instances of the generic preprocessor: CiaoPP (for the Ciao Prolog system) and CHIPRE (for the CHIP CLP(FL>) system). The currently existing analyses include types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis.
Resumo:
In an advanced program development environment, such as that discussed in the introduction of this book, several tools may coexist which handle both the program and information on the program in different ways. Also, these tools may interact among themselves and with the user. Thus, the different tools and the user need some way to communicate. It is our design principie that such communication be performed in terms of assertions. Assertions are syntactic objects which allow expressing properties of programs. Several assertion languages have been used in the past in different contexts, mainly related to program debugging. In this chapter we propose a general language of assertions which is used in different tools for validation and debugging of constraint logic programs in the context of the DiSCiPl project. The assertion language proposed is parametric w.r.t. the particular constraint domain and properties of interest being used in each different tool. The language proposed is quite general in that it poses few restrictions on the kind of properties which may be expressed. We believe the assertion language we propose is of practical relevance and appropriate for the different uses required in the tools considered.
Resumo:
This introduction gives a general perspective of the debugging methodology and the tools developed in the ESPRIT IV project DiSCiPl Debugging Systems for Constraint Programming. It has been prepared by the editors of this volume by substantial rewriting of the DiSCiPl deliverable CP Debugging Tools [1]. This introduction is organised as follows. Section 1 outlines the DiSCiPl view of debugging, its associated debugging methodology, and motivates the kinds of tools proposed: the assertion based tools, the declarative diagnoser and the visualisation tools. Sections 2 through 4 provide a short presentation of the tools of each kind. Finally, Section 5 presents a summary of the tools developed in the project. This introduction gives only a general view of the DiSCiPl debugging methodology and tools. For details and for specific bibliographic referenees the reader is referred to the subsequent chapters.
Resumo:
Visualization of program executions has been used in applications which include education and debugging. However, traditional visualization techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behavior of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualizing data evolution in CLP. We briefly review some previously proposed visualization paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyze the behavior and characteristics of an execution. In particular, we concéntrate on the representation of the run-time valúes of the variables, and the constraints among them. Given our interest in visualizing large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.
Resumo:
We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis.
Resumo:
CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system.
Resumo:
Se describe la Rehabilitación integral del Poblado Dirigido de Caño Roto: el Poblado original, los criterios y objetivos de la rehabilitación, los problemas de la edificación y las propuestas técnicas para la completa actualización de los edificios. Se analizan los costes y los resultados alcanzados en relación con la obra nueva equivalente, y se desarrolla un método de participación ciudadana y gestión que se mostró altamente eficaz. En cinco años se lograron rehabilitar integralmente unas 1.350 viviendas, lo que, aún hoy en día, supone un record para operaciones de esta profundidad de actuación. Se propone la replicación del modelo de gestión seguido para poder alcanzar los objetivos de la rehabilitación que se ha de emprender en el parque edificado de nuestro país.
Resumo:
We describe some of the novel aspects and motivations behind the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system.
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
We consider the problem of supporting goal-level, independent andparallelism (IAP) in the presence of non-determinism. IAP is exploited when two or more goals which will not interfere at run time are scheduled for simultaneous execution. Backtracking over non-deterministic parallel goals runs into the wellknown trapped goal and garbage slot problems. The proposed solutions for these problems generally require complex low-level machinery which makes systems difficult to maintain and extend, and in some cases can even affect sequential execution performance. In this paper we propose a novel solution to the problem of trapped nondeterministic goals and garbage slots which is based on a single stack reordering operation and offers several advantages over previous proposals. While the implementation of this operation itself is not simple, in return it does not impose constraints on the scheduler. As a result, the scheduler and the rest of the run-time machinery can safely ignore the trapped goal and garbage slot problems and their implementation is greatly simplified. Also, standard sequential execution remains unaffected. In addition to describing the solution we report on an implementation and provide performance results. We also suggest other possible applications of the proposed approach beyond parallel execution.
Resumo:
Abstract is not available
Resumo:
La construcción de los túneles de la calle 30 representa un interesantísimo ejemplo de obra en que pueden darse complejas condiciones geométricas, topográficas etc. en condiciones de tráfico también muy variadas. Es por eso que tanto el proyecto como la ejecución han supuesto un enorme desafío técnico y tras su finalización se ha convertido en un referente tanto nacional como internacional. La seguridad de los túneles de la calle 30 se apoya en todo un conjunto de medidas y sistemas fundamentales y que en gran parte son invisibles al usuario del túnel. En este capítulo se describen con detalle los sistemas de ventilación y sus implicaciones en la gestión medioambiental de la obra.
Resumo:
Visualisation of program executions has been used in applications which include education and debugging. However, traditional visualisation techniques often fall short of expectations or are altogether inadequate for new programming paradigms, such as Constraint Logic Programming (CLP), whose declarative and operational semantics differ in some crucial ways from those of other paradigms. In particular, traditional ideas regarding the behaviour of data often cannot be lifted in a straightforward way to (C)LP from other families of programming languages. In this chapter we discuss techniques for visualising data evolution in CLP. We briefly review some previously proposed visualisation paradigms, and also propose a number of (to our knowledge) novel ones. The graphical representations have been chosen based on the perceived needs of a programmer trying to analyse the behaviour and characteristics of an execution. In particular, we concentrate on the representation of the run-time values of the variables, and the constraints among them. Given our interest in visualising large executions, we also pay attention to abstraction techniques, i.e., techniques which are intended to help in reducing the complexity of the visual information.