94 resultados para Web Semantico semantic open data geoSPARQL
Resumo:
Idea Management Systems are an implementation of open innovation notion in the Web environment with the use of crowdsourcing techniques. In this area, one of the popular methods for coping with large amounts of data is duplicate de- tection. With our research, we answer a question if there is room to introduce more relationship types and in what degree would this change affect the amount of idea metadata and its diversity. Furthermore, based on hierarchical dependencies between idea relationships and relationship transitivity we propose a number of methods for dataset summarization. To evaluate our hypotheses we annotate idea datasets with new relationships using the contemporary methods of Idea Management Systems to detect idea similarity. Having datasets with relationship annotations at our disposal, we determine if idea features not related to idea topic (e.g. innovation size) have any relation to how annotators perceive types of idea similarity or dissimilarity.
Resumo:
This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Many attempts have been made to provide multilinguality to the Semantic Web, by means of annotation properties in Natural Language (NL), such as RDFs or SKOS labels, and other lexicon-ontology models, such as lemon, but there are still many issues to be solved if we want to have a truly accessible Multilingual Semantic Web (MSW). Reusability of monolingual resources (ontologies, lexicons, etc.), accessibility of multilingual resources hindered by many formats, reliability of ontological sources, disambiguation problems and multilingual presentation to the end user of all this information in NL can be mentioned as some of the most relevant problems. Unless this NL presentation is achieved, MSW will be restricted to the limits of IT experts, but even so, with great dissatisfaction and disenchantment
Resumo:
Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.
Resumo:
This paper describes the main goals and outcomes of the EU-funded Framework 7 project entitled Semantic Evaluation at Large Scale (SEALS). The growth and success of the Semantic Web is built upon a wide range of Semantic technologies from ontology engineering tools through to semantic web service discovery and semantic search. The evaluation of such technologies ? and, indeed, assessments of their mutual compatibility ? is critical for their sustained improvement and adoption. The SEALS project is creating an open and sustainable platform on which all aspects of an evaluation can be hosted and executed and has been designed to accommodate most technology types. It is envisaged that the platform will become the de facto repository of test datasets and will allow anyone to organise, execute and store the results of technology evaluations free of charge and without corporate bias. The demonstration will show how individual tools can be prepared for evaluation, uploaded to the platform, evaluated according to some criteria and the subsequent results viewed. In addition, the demonstration will show the flexibility and power of the SEALS Platform for evaluation organisers by highlighting some of the key technologies used.
Resumo:
The creation of language resources is a time-consuming process requiring the efforts of many people. The use of resources collaboratively created by non-linguists can potentially ameliorate this situation. However, such resources often contain more errors compared to resources created by experts. For the particular case of lexica, we analyse the case of Wiktionary, a resource created along wiki principles and argue that through the use of a principled lexicon model, namely lemon, the resulting data could be better understandable to machines. We then present a platform called lemon source that supports the creation of linked lexical data along the lemon model. This tool builds on the concept of a semantic wiki to enable collaborative editing of the resources by many users concurrently. In this paper, we describe the model, the tool and present an evaluation of its usability based on a small group of users.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies bringing their semantic to the data being published. These ontologies should be evaluated at different stages, both during their development and their publication. As important as correctly modelling the intended part of the world to be captured in an ontology, is publishing, sharing and facilitating the (re)use of the obtained model. In this paper, 11 evaluation characteristics, with respect to publish, share and facilitate the reuse, are proposed. In particular, 6 good practices and 5 pitfalls are presented, together with their associated detection methods. In addition, a grid-based rating system is generated. Both contributions, the set of evaluation characteristics and the grid system, could be useful for ontologists in order to reuse existing LD vocabularies or to check the one being built.
Resumo:
The use of semantic and Linked Data technologies for Enterprise Application Integration (EAI) is increasing in recent years. Linked Data and Semantic Web technologies such as the Resource Description Framework (RDF) data model provide several key advantages over the current de-facto Web Service and XML based integration approaches. The flexibility provided by representing the data in a more versatile RDF model using ontologies enables avoiding complex schema transformations and makes data more accessible using Web standards, preventing the formation of data silos. These three benefits represent an edge for Linked Data-based EAI. However, work still has to be performed so that these technologies can cope with the particularities of the EAI scenarios in different terms, such as data control, ownership, consistency, or accuracy. The first part of the paper provides an introduction to Enterprise Application Integration using Linked Data and the requirements imposed by EAI to Linked Data technologies focusing on one of the problems that arise in this scenario, the coreference problem, and presents a coreference service that supports the use of Linked Data in EAI systems. The proposed solution introduces the use of a context that aggregates a set of related identities and mappings from the identities to different resources that reside in distinct applications and provide different views or aspects of the same entity. A detailed architecture of the Coreference Service is presented explaining how it can be used to manage the contexts, identities, resources, and applications which they relate to. The paper shows how the proposed service can be utilized in an EAI scenario using an example involving a dashboard that integrates data from different systems and the proposed workflow for registering and resolving identities. As most enterprise applications are driven by business processes and involve legacy data, the proposed approach can be easily incorporated into enterprise applications.
Resumo:
The worldwide "hyper-connection" of any object around us is the challenge that promises to cover the paradigm of the Internet of Things. If the Internet has colonized the daily life of more than 2000 million1 people around the globe, the Internet of Things faces of connecting more than 100000 million2 "things" by 2020. The underlying Internet of Things’ technologies are the cornerstone that promises to solve interrelated global problems such as exponential population growth, energy management in cities, and environmental sustainability in the average and long term. On the one hand, this Project has the goal of knowledge acquisition about prototyping technologies available in the market for the Internet of Things. On the other hand, the Project focuses on the development of a system for devices management within a Wireless Sensor and Actuator Network to offer some services accessible from the Internet. To accomplish the objectives, the Project will begin with a detailed analysis of various “open source” hardware platforms to encourage creative development of applications, and automatically extract information from the environment around them for transmission to external systems. In addition, web platforms that enable mass storage with the philosophy of the Internet of Things will be studied. The project will culminate in the proposal and specification of a service-oriented software architecture for embedded systems that allows communication between devices on the network, and the data transmission to external systems. Furthermore, it abstracts the complexities of hardware to application developers. RESUMEN. La “hiper-conexión” a nivel mundial de cualquier objeto que nos rodea es el desafío al que promete dar cobertura el paradigma de la Internet de las Cosas. Si la Internet ha colonizado el día a día de más de 2000 millones1 de personas en todo el planeta, la Internet de las Cosas plantea el reto de conectar a más de 100000 millones2 de “cosas” para el año 2020. Las tecnologías subyacentes de la Internet de las Cosas son la piedra angular que prometen dar solución a problemas globales interrelacionados como el crecimiento exponencial de la población, la gestión de la energía en las ciudades o la sostenibilidad del medioambiente a largo plazo. Este Proyecto Fin de Carrera tiene como principales objetivos por un lado, la adquisición de conocimientos acerca de las tecnologías para prototipos disponibles en el mercado para la Internet de las Cosas, y por otro lado el desarrollo de un sistema para la gestión de dispositivos de una red inalámbrica de sensores que ofrezcan unos servicios accesibles desde la Internet. Con el fin de abordar los objetivos marcados, el proyecto comenzará con un análisis detallado de varias plataformas hardware de tipo “open source” que estimulen el desarrollo creativo de aplicaciones y que permitan extraer de forma automática información del medio que les rodea para transmitirlo a sistemas externos para su posterior procesamiento. Por otro lado, se estudiarán plataformas web identificadas con la filosofía de la Internet de las Cosas que permitan el almacenamiento masivo de datos que diferentes plataformas hardware transfieren a través de la Internet. El Proyecto culminará con la propuesta y la especificación una arquitectura software orientada a servicios para sistemas empotrados que permita la comunicación entre los dispositivos de la red y la transmisión de datos a sistemas externos, así como facilitar el desarrollo de aplicaciones a los programadores mediante la abstracción de la complejidad del hardware.
Resumo:
In this demo paper we describe an iOS-based application that allows visualizing live bus transport data in Madrid from static and streaming RDF endpoints, reusing the Web services provided by the bus transport authority in the city and wrapping them using SPARQLStream
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.