51 resultados para Simulation and modeling applications
Resumo:
Dentro de los materiales estructurales, el magnesio y sus aleaciones están siendo el foco de una de profunda investigación. Esta investigación está dirigida a comprender la relación existente entre la microestructura de las aleaciones de Mg y su comportamiento mecánico. El objetivo es optimizar las aleaciones actuales de magnesio a partir de su microestructura y diseñar nuevas aleaciones. Sin embargo, el efecto de los factores microestructurales (como la forma, el tamaño, la orientación de los precipitados y la morfología de los granos) en el comportamiento mecánico de estas aleaciones está todavía por descubrir. Para conocer mejor de la relación entre la microestructura y el comportamiento mecánico, es necesaria la combinación de técnicas avanzadas de caracterización experimental como de simulación numérica, a diferentes longitudes de escala. En lo que respecta a las técnicas de simulación numérica, la homogeneización policristalina es una herramienta muy útil para predecir la respuesta macroscópica a partir de la microestructura de un policristal (caracterizada por el tamaño, la forma y la distribución de orientaciones de los granos) y el comportamiento del monocristal. La descripción de la microestructura se lleva a cabo mediante modernas técnicas de caracterización (difracción de rayos X, difracción de electrones retrodispersados, así como con microscopia óptica y electrónica). Sin embargo, el comportamiento del cristal sigue siendo difícil de medir, especialmente en aleaciones de Mg, donde es muy complicado conocer el valor de los parámetros que controlan el comportamiento mecánico de los diferentes modos de deslizamiento y maclado. En la presente tesis se ha desarrollado una estrategia de homogeneización computacional para predecir el comportamiento de aleaciones de magnesio. El comportamiento de los policristales ha sido obtenido mediante la simulación por elementos finitos de un volumen representativo (RVE) de la microestructura, considerando la distribución real de formas y orientaciones de los granos. El comportamiento del cristal se ha simulado mediante un modelo de plasticidad cristalina que tiene en cuenta los diferentes mecanismos físicos de deformación, como el deslizamiento y el maclado. Finalmente, la obtención de los parámetros que controlan el comportamiento del cristal (tensiones críticas resueltas (CRSS) así como las tasas de endurecimiento para todos los modos de maclado y deslizamiento) se ha resuelto mediante la implementación de una metodología de optimización inversa, una de las principales aportaciones originales de este trabajo. La metodología inversa pretende, por medio del algoritmo de optimización de Levenberg-Marquardt, obtener el conjunto de parámetros que definen el comportamiento del monocristal y que mejor ajustan a un conjunto de ensayos macroscópicos independientes. Además de la implementación de la técnica, se han estudiado tanto la objetividad del metodología como la unicidad de la solución en función de la información experimental. La estrategia de optimización inversa se usó inicialmente para obtener el comportamiento cristalino de la aleación AZ31 de Mg, obtenida por laminado. Esta aleación tiene una marcada textura basal y una gran anisotropía plástica. El comportamiento de cada grano incluyó cuatro mecanismos de deformación diferentes: deslizamiento en los planos basal, prismático, piramidal hc+ai, junto con el maclado en tracción. La validez de los parámetros resultantes se validó mediante la capacidad del modelo policristalino para predecir ensayos macroscópicos independientes en diferentes direcciones. En segundo lugar se estudió mediante la misma estrategia, la influencia del contenido de Neodimio (Nd) en las propiedades de una aleación de Mg-Mn-Nd, obtenida por extrusión. Se encontró que la adición de Nd produce una progresiva isotropización del comportamiento macroscópico. El modelo mostró que este incremento de la isotropía macroscópica era debido tanto a la aleatoriedad de la textura inicial como al incremento de la isotropía del comportamiento del cristal, con valores similares de las CRSSs de los diferentes modos de deformación. Finalmente, el modelo se empleó para analizar el efecto de la temperatura en el comportamiento del cristal de la aleación de Mg-Mn-Nd. La introducción en el modelo de los efectos non-Schmid sobre el modo de deslizamiento piramidal hc+ai permitió capturar el comportamiento mecánico a temperaturas superiores a 150_C. Esta es la primera vez, de acuerdo con el conocimiento del autor, que los efectos non-Schmid han sido observados en una aleación de Magnesio. The study of Magnesium and its alloys is a hot research topic in structural materials. In particular, special attention is being paid in understanding the relationship between microstructure and mechanical behavior in order to optimize the current alloy microstructures and guide the design of new alloys. However, the particular effect of several microstructural factors (precipitate shape, size and orientation, grain morphology distribution, etc.) in the mechanical performance of a Mg alloy is still under study. The combination of advanced characterization techniques and modeling at several length scales is necessary to improve the understanding of the relation microstructure and mechanical behavior. Respect to the simulation techniques, polycrystalline homogenization is a very useful tool to predict the macroscopic response from polycrystalline microstructure (grain size, shape and orientation distributions) and crystal behavior. The microstructure description is fully covered with modern characterization techniques (X-ray diffraction, EBSD, optical and electronic microscopy). However, the mechanical behaviour of single crystals is not well-known, especially in Mg alloys where the correct parameterization of the mechanical behavior of the different slip/twin modes is a very difficult task. A computational homogenization framework for predicting the behavior of Magnesium alloys has been developed in this thesis. The polycrystalline behavior was obtained by means of the finite element simulation of a representative volume element (RVE) of the microstructure including the actual grain shape and orientation distributions. The crystal behavior for the grains was accounted for a crystal plasticity model which took into account the physical deformation mechanisms, e.g. slip and twinning. Finally, the problem of the parametrization of the crystal behavior (critical resolved shear stresses (CRSS) and strain hardening rates of all the slip and twinning modes) was obtained by the development of an inverse optimization methodology, one of the main original contributions of this thesis. The inverse methodology aims at finding, by means of the Levenberg-Marquardt optimization algorithm, the set of parameters defining crystal behavior that best fit a set of independent macroscopic tests. The objectivity of the method and the uniqueness of solution as function of the input information has been numerically studied. The inverse optimization strategy was first used to obtain the crystal behavior of a rolled polycrystalline AZ31 Mg alloy that showed a marked basal texture and a strong plastic anisotropy. Four different deformation mechanisms: basal, prismatic and pyramidal hc+ai slip, together with tensile twinning were included to characterize the single crystal behavior. The validity of the resulting parameters was proved by the ability of the polycrystalline model to predict independent macroscopic tests on different directions. Secondly, the influence of Neodymium (Nd) content on an extruded polycrystalline Mg-Mn-Nd alloy was studied using the same homogenization and optimization framework. The effect of Nd addition was a progressive isotropization of the macroscopic behavior. The model showed that this increase in the macroscopic isotropy was due to a randomization of the initial texture and also to an increase of the crystal behavior isotropy (similar values of the CRSSs of the different modes). Finally, the model was used to analyze the effect of temperature on the crystal behaviour of a Mg-Mn-Nd alloy. The introduction in the model of non-Schmid effects on the pyramidal hc+ai slip allowed to capture the inverse strength differential that appeared, between the tension and compression, above 150_C. This is the first time, to the author's knowledge, that non-Schmid effects have been reported for Mg alloys.
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.
Resumo:
Las Field-Programmable Gate Arrays (FPGAs) SRAM se construyen sobre una memoria de configuración de tecnología RAM Estática (SRAM). Presentan múltiples características que las hacen muy interesantes para diseñar sistemas empotrados complejos. En primer lugar presentan un coste no-recurrente de ingeniería (NRE) bajo, ya que los elementos lógicos y de enrutado están pre-implementados (el diseño de usuario define su conexionado). También, a diferencia de otras tecnologías de FPGA, pueden ser reconfiguradas (incluso en campo) un número ilimitado de veces. Es más, las FPGAs SRAM de Xilinx soportan Reconfiguración Parcial Dinámica (DPR), la cual permite reconfigurar la FPGA sin interrumpir la aplicación. Finalmente, presentan una alta densidad de lógica, una alta capacidad de procesamiento y un rico juego de macro-bloques. Sin embargo, un inconveniente de esta tecnología es su susceptibilidad a la radiación ionizante, la cual aumenta con el grado de integración (geometrías más pequeñas, menores tensiones y mayores frecuencias). Esta es una precupación de primer nivel para aplicaciones en entornos altamente radiativos y con requisitos de alta confiabilidad. Este fenómeno conlleva una degradación a largo plazo y también puede inducir fallos instantáneos, los cuales pueden ser reversibles o producir daños irreversibles. En las FPGAs SRAM, los fallos inducidos por radiación pueden aparecer en en dos capas de arquitectura diferentes, que están físicamente superpuestas en el dado de silicio. La Capa de Aplicación (o A-Layer) contiene el hardware definido por el usuario, y la Capa de Configuración contiene la memoria de configuración y la circuitería de soporte. Los fallos en cualquiera de estas capas pueden hacer fracasar el sistema, lo cual puede ser ás o menos tolerable dependiendo de los requisitos de confiabilidad del sistema. En el caso general, estos fallos deben gestionados de alguna manera. Esta tesis trata sobre la gestión de fallos en FPGAs SRAM a nivel de sistema, en el contexto de sistemas empotrados autónomos y confiables operando en un entorno radiativo. La tesis se centra principalmente en aplicaciones espaciales, pero los mismos principios pueden aplicarse a aplicaciones terrenas. Las principales diferencias entre ambas son el nivel de radiación y la posibilidad de mantenimiento. Las diferentes técnicas para la gestión de fallos en A-Layer y C-Layer son clasificados, y sus implicaciones en la confiabilidad del sistema son analizados. Se proponen varias arquitecturas tanto para Gestores de Fallos de una capa como de doble-capa. Para estos últimos se propone una arquitectura novedosa, flexible y versátil. Gestiona las dos capas concurrentemente de manera coordinada, y permite equilibrar el nivel de redundancia y la confiabilidad. Con el objeto de validar técnicas de gestión de fallos dinámicas, se desarrollan dos diferentes soluciones. La primera es un entorno de simulación para Gestores de Fallos de C-Layer, basado en SystemC como lenguaje de modelado y como simulador basado en eventos. Este entorno y su metodología asociada permite explorar el espacio de diseño del Gestor de Fallos, desacoplando su diseño del desarrollo de la FPGA objetivo. El entorno incluye modelos tanto para la C-Layer de la FPGA como para el Gestor de Fallos, los cuales pueden interactuar a diferentes niveles de abstracción (a nivel de configuration frames y a nivel físico JTAG o SelectMAP). El entorno es configurable, escalable y versátil, e incluye capacidades de inyección de fallos. Los resultados de simulación para algunos escenarios son presentados y comentados. La segunda es una plataforma de validación para Gestores de Fallos de FPGAs Xilinx Virtex. La plataforma hardware aloja tres Módulos de FPGA Xilinx Virtex-4 FX12 y dos Módulos de Unidad de Microcontrolador (MCUs) de 32-bits de propósito general. Los Módulos MCU permiten prototipar Gestores de Fallos de C-Layer y A-Layer basados en software. Cada Módulo FPGA implementa un enlace de A-Layer Ethernet (a través de un switch Ethernet) con uno de los Módulos MCU, y un enlace de C-Layer JTAG con el otro. Además, ambos Módulos MCU intercambian comandos y datos a través de un enlace interno tipo UART. Al igual que para el entorno de simulación, se incluyen capacidades de inyección de fallos. Los resultados de pruebas para algunos escenarios son también presentados y comentados. En resumen, esta tesis cubre el proceso completo desde la descripción de los fallos FPGAs SRAM inducidos por radiación, pasando por la identificación y clasificación de técnicas de gestión de fallos, y por la propuesta de arquitecturas de Gestores de Fallos, para finalmente validarlas por simulación y pruebas. El trabajo futuro está relacionado sobre todo con la implementación de Gestores de Fallos de Sistema endurecidos para radiación. ABSTRACT SRAM-based Field-Programmable Gate Arrays (FPGAs) are built on Static RAM (SRAM) technology configuration memory. They present a number of features that make them very convenient for building complex embedded systems. First of all, they benefit from low Non-Recurrent Engineering (NRE) costs, as the logic and routing elements are pre-implemented (user design defines their connection). Also, as opposed to other FPGA technologies, they can be reconfigured (even in the field) an unlimited number of times. Moreover, Xilinx SRAM-based FPGAs feature Dynamic Partial Reconfiguration (DPR), which allows to partially reconfigure the FPGA without disrupting de application. Finally, they feature a high logic density, high processing capability and a rich set of hard macros. However, one limitation of this technology is its susceptibility to ionizing radiation, which increases with technology scaling (smaller geometries, lower voltages and higher frequencies). This is a first order concern for applications in harsh radiation environments and requiring high dependability. Ionizing radiation leads to long term degradation as well as instantaneous faults, which can in turn be reversible or produce irreversible damage. In SRAM-based FPGAs, radiation-induced faults can appear at two architectural layers, which are physically overlaid on the silicon die. The Application Layer (or A-Layer) contains the user-defined hardware, and the Configuration Layer (or C-Layer) contains the (volatile) configuration memory and its support circuitry. Faults at either layers can imply a system failure, which may be more ore less tolerated depending on the dependability requirements. In the general case, such faults must be managed in some way. This thesis is about managing SRAM-based FPGA faults at system level, in the context of autonomous and dependable embedded systems operating in a radiative environment. The focus is mainly on space applications, but the same principles can be applied to ground applications. The main differences between them are the radiation level and the possibility for maintenance. The different techniques for A-Layer and C-Layer fault management are classified and their implications in system dependability are assessed. Several architectures are proposed, both for single-layer and dual-layer Fault Managers. For the latter, a novel, flexible and versatile architecture is proposed. It manages both layers concurrently in a coordinated way, and allows balancing redundancy level and dependability. For the purpose of validating dynamic fault management techniques, two different solutions are developed. The first one is a simulation framework for C-Layer Fault Managers, based on SystemC as modeling language and event-driven simulator. This framework and its associated methodology allows exploring the Fault Manager design space, decoupling its design from the target FPGA development. The framework includes models for both the FPGA C-Layer and for the Fault Manager, which can interact at different abstraction levels (at configuration frame level and at JTAG or SelectMAP physical level). The framework is configurable, scalable and versatile, and includes fault injection capabilities. Simulation results for some scenarios are presented and discussed. The second one is a validation platform for Xilinx Virtex FPGA Fault Managers. The platform hosts three Xilinx Virtex-4 FX12 FPGA Modules and two general-purpose 32-bit Microcontroller Unit (MCU) Modules. The MCU Modules allow prototyping software-based CLayer and A-Layer Fault Managers. Each FPGA Module implements one A-Layer Ethernet link (through an Ethernet switch) with one of the MCU Modules, and one C-Layer JTAG link with the other. In addition, both MCU Modules exchange commands and data over an internal UART link. Similarly to the simulation framework, fault injection capabilities are implemented. Test results for some scenarios are also presented and discussed. In summary, this thesis covers the whole process from describing the problem of radiationinduced faults in SRAM-based FPGAs, then identifying and classifying fault management techniques, then proposing Fault Manager architectures and finally validating them by simulation and test. The proposed future work is mainly related to the implementation of radiation-hardened System Fault Managers.
Resumo:
To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz.