53 resultados para Programming
Resumo:
El objetivo de este trabajo de fin de grado es la exposición de los resultados y conclusiones, fruto de las tareas desarrolladas durante las practicas curriculares en el Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) el presente curso académico. La estructura del trabajo se compone de dos bloques diferenciados entre sí: el seguimiento de una batería y el desarrollo de un módulo para una CDF.
Resumo:
In this paper we focus on the selection of safeguards in a fuzzy risk analysis and management methodology for information systems (IS). Assets are connected by dependency relationships, and a failure of one asset may affect other assets. After computing impact and risk indicators associated with previously identified threats, we identify and apply safeguards to reduce risks in the IS by minimizing the transmission probabilities of failures throughout the asset network. However, as safeguards have associated costs, the aim is to select the safeguards that minimize costs while keeping the risk within acceptable levels. To do this, we propose a dynamic programming-based method that incorporates simulated annealing to tackle optimizations problems.
Resumo:
In this paper, we present a mixed-integer linear programming model for determining salary-revision matrices for an organization based on that organization?s general strategies. The solution obtained from this model consists of salary increases for each employee; these increases consider the employee?s professional performance, salary level relative to peers within the organization, and professional group. In addition to budget constraints, we modeled other elements typical of compensation systems, such as equity and justice. Red Eléctrica de España (REE), the transmission agent and operator of the Spanish electricity system, used the model to revise its 2010 and 2011 salary policies, and achieved results that were aligned with the company strategy. REE incorporated the model into the salary management module within its information system, and plans to continue to use the model in revisions of the module.
Resumo:
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.
Resumo:
La calificación automática de tareas de programación es un tema importante dentro del campo de la innovación educativa que se enfoca en mejorar las habilidades de programación de los estudiantes y en optimizar el tiempo que el profesorado dedica a ello. Uno de los principales problemas vigentes está relacionado con la diversidad de criterios para calificar las tareas de programación. El presente trabajo propone e implementa una arquitectura, basada en el concepto de orquestación de servicios, para soportar varios procesos de calificación automática de tareas de programación. Esto es obtenido a través de las características de modularidad, extensibilidad y flexibilidad que la arquitectura provee al proceso de calificación. La arquitectura define como pieza clave un elemento llamado Grading-submodule, el mismo que provee un servicio de evaluación del código fuente considerando un criterio de calificación. La implementación se ha llevado a cabo sobre la herramienta Virtual Programming Lab; y los resultados demuestran la factibilidad de realización, y la utilidad tanto para el profesorado como para los estudiantes.
Resumo:
Computer programming is known to be one of the most difficult courses for students in the first year of engineering. They are faced with the challenge of abstract thinking and gaining programming skills for the first time. These skills are acquired by continuous practicing from the start of the course. In order to enhance the motivation and dynamism of the learning and assessment processes, we have proposed the use of three educational resources namely screencasts, self-assessment questionnaires and automated grading of assignments. These resources have been made available in Moodle which is a Learning Management System widely used in education environments and adopted by the Telecommunications Engineering School at the Universidad Politécnica de Madrid (UPM). Both teachers and students can enhance the learning and assessment processes through the use of new educational activities such as self-assessment questionnaires and automated grading of assignments. On the other hand, multimedia resources such as screencasts can guide students in complex topics. The resources proposed allow teachers to improve their tutorial actions since they provide immediate feedback and comments to students without the enormous effort of manual correction and evaluation by teachers specially taking into account the large number of students enrolled in the course. In this paper we present the case study where three proposed educational resources were applied. We describe the special features of the course and explain why the use of these resources can both enhance the students? motivation and improve the teaching and learning processes. Our research work was carried out on students attending the "Computer programming" course offered in the first year of a Telecommunications Engineering degree at UPM. This course is mandatory and has more than 450 enrolled students. Our purpose is to encourage the motivation and dynamism of the learning and assessment processes.
Resumo:
El sistema de energía eólica-diesel híbrido tiene un gran potencial en la prestación de suministro de energía a comunidades remotas. En comparación con los sistemas tradicionales de diesel, las plantas de energía híbridas ofrecen grandes ventajas tales como el suministro de capacidad de energía extra para "microgrids", reducción de los contaminantes y emisiones de gases de efecto invernadero, y la cobertura del riesgo de aumento inesperado del precio del combustible. El principal objetivo de la presente tesis es proporcionar nuevos conocimientos para la evaluación y optimización de los sistemas de energía híbrido eólico-diesel considerando las incertidumbres. Dado que la energía eólica es una variable estocástica, ésta no puede ser controlada ni predecirse con exactitud. La naturaleza incierta del viento como fuente de energía produce serios problemas tanto para la operación como para la evaluación del valor del sistema de energía eólica-diesel híbrido. Por un lado, la regulación de la potencia inyectada desde las turbinas de viento es una difícil tarea cuando opera el sistema híbrido. Por otro lado, el bene.cio económico de un sistema eólico-diesel híbrido se logra directamente a través de la energía entregada a la red de alimentación de la energía eólica. Consecuentemente, la incertidumbre de los recursos eólicos incrementa la dificultad de estimar los beneficios globales en la etapa de planificación. La principal preocupación del modelo tradicional determinista es no tener en cuenta la incertidumbre futura a la hora de tomar la decisión de operación. Con lo cual, no se prevé las acciones operativas flexibles en respuesta a los escenarios futuros. El análisis del rendimiento y simulación por ordenador en el Proyecto Eólico San Cristóbal demuestra que la incertidumbre sobre la energía eólica, las estrategias de control, almacenamiento de energía, y la curva de potencia de aerogeneradores tienen un impacto significativo sobre el rendimiento del sistema. En la presente tesis, se analiza la relación entre la teoría de valoración de opciones y el proceso de toma de decisiones. La opción real se desarrolla con un modelo y se presenta a través de ejemplos prácticos para evaluar el valor de los sistemas de energía eólica-diesel híbridos. Los resultados muestran que las opciones operacionales pueden aportar un valor adicional para el sistema de energía híbrida, cuando esta flexibilidad operativa se utiliza correctamente. Este marco se puede aplicar en la optimización de la operación a corto plazo teniendo en cuenta la naturaleza dependiente de la trayectoria de la política óptima de despacho, dadas las plausibles futuras realizaciones de la producción de energía eólica. En comparación con los métodos de valoración y optimización existentes, el resultado del caso de estudio numérico muestra que la política de operación resultante del modelo de optimización propuesto presenta una notable actuación en la reducción del con- sumo total de combustible del sistema eólico-diesel. Con el .n de tomar decisiones óptimas, los operadores de plantas de energía y los gestores de éstas no deben centrarse sólo en el resultado directo de cada acción operativa, tampoco deberían tomar decisiones deterministas. La forma correcta es gestionar dinámicamente el sistema de energía teniendo en cuenta el valor futuro condicionado en cada opción frente a la incertidumbre. ABSTRACT Hybrid wind-diesel power systems have a great potential in providing energy supply to remote communities. Compared with the traditional diesel systems, hybrid power plants are providing many advantages such as providing extra energy capacity to the micro-grid, reducing pollution and greenhouse-gas emissions, and hedging the risk of unexpected fuel price increases. This dissertation aims at providing novel insights for assessing and optimizing hybrid wind-diesel power systems considering the related uncertainties. Since wind power can neither be controlled nor accurately predicted, the energy harvested from a wind turbine may be considered a stochastic variable. This uncertain nature of wind energy source results in serious problems for both the operation and value assessment of the hybrid wind-diesel power system. On the one hand, regulating the uncertain power injected from wind turbines is a difficult task when operating the hybrid system. On the other hand, the economic profit of a hybrid wind-diesel system is achieved directly through the energy delivered to the power grid from the wind energy. Therefore, the uncertainty of wind resources has increased the difficulty in estimating the total benefits in the planning stage. The main concern of the traditional deterministic model is that it does not consider the future uncertainty when making the dispatch decision. Thus, it does not provide flexible operational actions in response to the uncertain future scenarios. Performance analysis and computer simulation on the San Cristobal Wind Project demonstrate that the wind power uncertainty, control strategies, energy storage, and the wind turbine power curve have a significant impact on the performance of the system. In this dissertation, the relationship between option pricing theory and decision making process is discussed. A real option model is developed and presented through practical examples for assessing the value of hybrid wind-diesel power systems. Results show that operational options can provide additional value to the hybrid power system when this operational flexibility is correctly utilized. This framework can be applied in optimizing short term dispatch decisions considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. Comparing with the existing valuation and optimization methods, result from numerical example shows that the dispatch policy resulting from the proposed optimization model exhibits a remarkable performance in minimizing the total fuel consumption of the wind-diesel system. In order to make optimal decisions, power plant operators and managers should not just focus on the direct outcome of each operational action; neither should they make deterministic decisions. The correct way is to dynamically manage the power system by taking into consideration the conditional future value in each option in response to the uncertainty.
Resumo:
This paper presents an online C compiler designed so that students can program their practical assignments in Programming courses. What is really innovative is the self-assessment of the exercises based on black-box tests and train students’ skill to test software. Moreover, this tool lets instructors, not only proposing and classifying practical exercises, but also evaluating automatically the efforts dedicated and the results obtained by the students. The system has been applied to the 1st-year students at the Industrial Engineering specialization at the Universidad Politecnica de Madrid. Results show that the students obtained better academic performance, reducing the failure rate in the practical exam considerably with respect to previous years, in addition that an anonymous survey proved that students are satisfied with the system because they get instant feedback about their programs.