53 resultados para Parallel execution
Resumo:
We present the design and implementation of the and-parallel component of ACE. ACE is a computational model for the full Prolog language that simultaneously exploits both or-parallelism and independent and-parallelism. A high performance implementation of the ACE model has been realized and its performance reported in this paper. We discuss how some of the standard problems which appear when implementing and-parallel systems are solved in ACE. We then propose a number of optimizations aimed at reducing the overheads and the increased memory consumption which occur in such systems when using previously proposed solutions. Finally, we present results from an implementation of ACE which includes the optimizations proposed. The results show that ACE exploits and-parallelism with high efficiency and high speedups. Furthermore, they also show that the proposed optimizations, which are applicable to many other and-parallel systems, significantly decrease memory consumption and increase speedups and absolute performance both in forwards execution and during backtracking.
Resumo:
Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
We present a technique to estimate accurate speedups for parallel logic programs with relative independence from characteristics of a given implementation or underlying parallel hardware. The proposed technique is based on gathering accurate data describing one execution at run-time, which is fed to a simulator. Alternative schedulings are then simulated and estimates computed for the corresponding speedups. A tool implementing the aforementioned techniques is presented, and its predictions are compared to the performance of real systems, showing good correlation.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.
Resumo:
We present an overview of the stack-based memory management techniques that we used in our non-deterministic and-parallel Prolog systems: &-Prolog and DASWAM. We believe that the problems associated with non-deterministic and-parallel systems are more general than those encountered in or-parallel and deterministic and-parallel systems, which can be seen as subsets of this more general case. We develop on the previously proposed "marker scheme", lifting some of the restrictions associated with the selection of goals while keeping (virtual) memory consumption down. We also review some of the other problems associated with the stack-based management scheme, such as handling of forward and backward execution, cut, and roll-backs.
Resumo:
Most implementations of parallel logic programming rely on complex low-level machinery which is arguably difflcult to implement and modify. We explore an alternative approach aimed at taming that complexity by raising core parts of the implementation to the source language level for the particular case of and-parallelism. Therefore, we handle a signiflcant portion of the parallel implementation mechanism at the Prolog level with the help of a comparatively small number of concurrency-related primitives which take care of lower-level tasks such as locking, thread management, stack set management, etc. The approach does not eliminate altogether modiflcations to the abstract machine, but it does greatly simplify them and it also facilitates experimenting with different alternatives. We show how this approach allows implementing both restricted and unrestricted (i.e., non fork-join) parallelism. Preliminary experiments show that the amount of performance sacriflced is reasonable, although granularity control is required in some cases. Also, we observe that the availability of unrestricted parallelism contributes to better observed speedups.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user defined, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples.
Resumo:
Goal-level Independent and-parallelism (IAP) is exploited by scheduling for simultaneous execution two or more goals which will not interfere with each other at run time. This can be done safely even if such goals can produce multiple answers. The most successful IAP implementations to date have used recomputation of answers and sequentially ordered backtracking. While in principle simplifying the implementation, recomputation can be very inefficient if the granularity of the parallel goals is large enough and they produce several answers, while sequentially ordered backtracking limits parallelism. And, despite the expected simplification, the implementation of the classic schemes has proved to involve complex engineering, with the consequent difficulty for system maintenance and expansion, and still frequently run into the well-known trapped goal and garbage slot problems. This work presents ideas about an alternative parallel backtracking model for IAP and a simulation studio. The model features parallel out-of-order backtracking and relies on answer memoization to reuse and combine answers. Whenever a parallel goal backtracks, its siblings also perform backtracking, but after storing the bindings generated by previous answers. The bindings are then reinstalled when combining answers. In order not to unnecessarily penalize forward execution, non-speculative and-parallel goals which have not been executed yet take precedence over sibling goals which could be backtracked over. Using a simulator, we show that this approach can bring significant performance advantages over classical approaches.