76 resultados para Automatic seat belts.
Resumo:
Nowadays patients admitted to critical care units have most of their physiological parameters measured automatically by sophisticated commercial monitoring devices. More often than not, these devices supervise whether the values of the parameters they measure lie within a pre-established range, and issue warning of deviations from this range by triggering alarms. The automation of measuring and supervising tasks not only discharges the healthcare staff of a considerable workload but also avoids human errors in these repetitive and monotonous tasks. Arguably, the most relevant physiological parameter that is still measured and supervised manually by critical care unit staff is urine output (UO). In this paper we present a patent-pending device that provides continuous and accurate measurements of patient’s UO. The device uses capacitive sensors to take continuous measurements of the height of the column of liquid accumulated in two chambers that make up a plastic container. The first chamber, where the urine inputs, has a small volume. Once it has been filled it overflows into a second bigger chamber. The first chamber provides accurate UO measures of patients whose UO has to be closely supervised, while the second one avoids the need for frequent interventions by the nursing staff to empty the container
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
La presente Tesis analiza las posibilidades que ofrecen en la actualidad las tecnologías del habla para la detección de patologías clínicas asociadas a la vía aérea superior. El estudio del habla que tradicionalmente cubre tanto la producción como el proceso de transformación del mensaje y las señales involucradas, desde el emisor hasta alcanzar al receptor, ofrece una vía de estudio alternativa para estas patologías. El hecho de que la señal emitida no solo contiene este mensaje, sino también información acerca del locutor, ha motivado el desarrollo de sistemas orientados a la identificación y verificación de la identidad de los locutores. Estos trabajos han recibido recientemente un nuevo impulso, orientándose tanto hacia la caracterización de rasgos que son comunes a varios locutores, como a las diferencias existentes entre grabaciones de un mismo locutor. Los primeros resultan especialmente relevantes para esta Tesis dado que estos rasgos podrían evidenciar la presencia de características relacionadas con una cierta condición común a varios locutores, independiente de su identidad. Tal es el caso que se enfrenta en esta Tesis, donde los rasgos identificados se relacionarían con una de la patología particular y directamente vinculada con el sistema de físico de conformación del habla. El caso del Síndrome de Apneas Hipopneas durante el Sueno (SAHS) resulta paradigmático. Se trata de una patología con una elevada prevalencia mundo, que aumenta con la edad. Los pacientes de esta patología experimentan episodios de cese involuntario de la respiración durante el sueño, que se prolongan durante varios segundos y que se reproducen a lo largo de la noche impidiendo el correcto descanso. En el caso de la apnea obstructiva, estos episodios se deben a la imposibilidad de mantener un camino abierto a través de la vía aérea, de forma que el flujo de aire se ve interrumpido. En la actualidad, el diagnostico de estos pacientes se realiza a través de un estudio polisomnográfico, que se centra en el análisis de los episodios de apnea durante el sueño, requiriendo que el paciente permanezca en el hospital durante una noche. La complejidad y el elevado coste de estos procedimientos, unidos a las crecientes listas de espera, han evidenciado la necesidad de contar con técnicas rápidas de detección, que si bien podrían no obtener tasas tan elevadas, permitirían reorganizar las listas de espera en función del grado de severidad de la patología en cada paciente. Entre otros, los sistemas de diagnostico por imagen, así como la caracterización antropométrica de los pacientes, han evidenciado la existencia de patrones anatómicos que tendrían influencia directa sobre el habla. Los trabajos dedicados al estudio del SAHS en lo relativo a como esta afecta al habla han sido escasos y algunos de ellos incluso contradictorios. Sin embargo, desde finales de la década de 1980 se conoce la existencia de patrones específicos relativos a la articulación, la fonación y la resonancia. Sin embargo, su descripción resultaba difícilmente aprovechable a través de un sistema de reconocimiento automático, pero apuntaba la existencia de un nexo entre voz y SAHS. En los últimos anos las técnicas de procesado automático han permitido el desarrollo de sistemas automáticos que ya son capaces de identificar diferencias significativas en el habla de los pacientes del SAHS, y que los distinguen de los locutores sanos. Por contra, poco se conoce acerca de la conexión entre estos nuevos resultados, los sé que habían obtenido en el pasado y la patogénesis del SAHS. Esta Tesis continua la labor desarrollada en este ámbito considerando específicamente: el estudio de la forma en que el SAHS afecta el habla de los pacientes, la mejora en las tasas de clasificación automática y la combinación de la información obtenida con los predictores utilizados por los especialistas clínicos en sus evaluaciones preliminares. Las dos primeras tareas plantean problemas simbióticos, pero diferentes. Mientras el estudio de la conexión entre el SAHS y el habla requiere de modelos acotados que puedan ser interpretados con facilidad, los sistemas de reconocimiento se sirven de un elevado número de dimensiones para la caracterización y posterior identificación de patrones. Así, la primera tarea debe permitirnos avanzar en la segunda, al igual que la incorporación de los predictores utilizados por los especialistas clínicos. La Tesis aborda el estudio tanto del habla continua como del habla sostenida, con el fin de aprovechar las sinergias y diferencias existentes entre ambas. En el análisis del habla continua se tomo como punto de partida un esquema que ya fue evaluado con anterioridad, y sobre el cual se ha tratado la evaluación y optimización de la representación del habla, así como la caracterización de los patrones específicos asociados al SAHS. Ello ha evidenciado la conexión entre el SAHS y los elementos fundamentales de la señal de voz: los formantes. Los resultados obtenidos demuestran que el éxito de estos sistemas se debe, fundamentalmente, a la capacidad de estas representaciones para describir dichas componentes, obviando las dimensiones ruidosas o con poca capacidad discriminativa. El esquema resultante ofrece una tasa de error por debajo del 18%, sirviéndose de clasificadores notablemente menos complejos que los descritos en el estado del arte y de una única grabación de voz de corta duración. En relación a la conexión entre el SAHS y los patrones observados, fue necesario considerar las diferencias inter- e intra-grupo, centrándonos en la articulación característica del locutor, sustituyendo los complejos modelos de clasificación por el estudio de los promedios espectrales. El resultado apunta con claridad hacia ciertas regiones del eje de frecuencias, sugiriendo la existencia de un estrechamiento sistemático en la sección del tracto en la región de la orofaringe, ya prevista en la patogénesis de este síndrome. En cuanto al habla sostenida, se han reproducido los estudios realizados sobre el habla continua en grabaciones de la vocal /a/ sostenida. Los resultados son cualitativamente análogos a los anteriores, si bien en este caso las tasas de clasificación resultan ser más bajas. Con el objetivo de identificar el sentido de este resultado se reprodujo el estudio de los promedios espectrales y de la variabilidad inter e intra-grupo. Ambos estudios mostraron importantes diferencias con los anteriores que podrían explicar estos resultados. Sin embargo, el habla sostenida ofrece otras oportunidades al establecer un entorno controlado para el estudio de la fonación, que también había sido identificada como una fuente de información para la detección del SAHS. De su estudio se pudo observar que, en el conjunto de datos disponibles, no existen variaciones que pudieran asociarse fácilmente con la fonación. Únicamente aquellas dimensiones que describen la distribución de energía a lo largo del eje de frecuencia evidenciaron diferencias significativas, apuntando, una vez más, en la dirección de las resonancias espectrales. Analizados los resultados anteriores, la Tesis afronta la fusión de ambas fuentes de información en un único sistema de clasificación. Con ello es posible mejorar las tasas de clasificación, bajo la hipótesis de que la información presente en el habla continua y el habla sostenida es fundamentalmente distinta. Esta tarea se realizo a través de un sencillo esquema de fusión que obtuvo un 88.6% de aciertos en clasificación (tasa de error del 11.4%), lo que representa una mejora significativa respecto al estado del arte. Finalmente, la combinación de este clasificador con los predictores utilizados por los especialistas clínicos ofreció una tasa del 91.3% (tasa de error de 8.7%), que se encuentra dentro del margen ofrecido por esquemas más costosos e intrusivos, y que a diferencia del propuesto, no pueden ser utilizados en la evaluación previa de los pacientes. Con todo, la Tesis ofrece una visión clara sobre la relación entre el SAHS y el habla, evidenciando el grado de madurez alcanzado por la tecnología del habla en la caracterización y detección del SAHS, poniendo de manifiesto que su uso para la evaluación de los pacientes ya sería posible, y dejando la puerta abierta a futuras investigaciones que continúen el trabajo aquí iniciado. ABSTRACT This Thesis explores the potential of speech technologies for the detection of clinical disorders connected to the upper airway. The study of speech traditionally covers both the production process and post processing of the signals involved, from the speaker up to the listener, offering an alternative path to study these pathologies. The fact that utterances embed not just the encoded message but also information about the speaker, has motivated the development of automatic systems oriented to the identification and verificaton the speaker’s identity. These have recently been boosted and reoriented either towards the characterization of traits that are common to several speakers, or to the differences between records of the same speaker collected under different conditions. The first are particularly relevant to this Thesis as these patterns could reveal the presence of features that are related to a common condition shared among different speakers, regardless of their identity. Such is the case faced in this Thesis, where the traits identified would relate to a particular pathology, directly connected to the speech production system. The Obstructive Sleep Apnea syndrome (OSA) is a paradigmatic case for analysis. It is a disorder with high prevalence among adults and affecting a larger number of them as they grow older. Patients suffering from this disorder experience episodes of involuntary cessation of breath during sleep that may last a few seconds and reproduce throughout the night, preventing proper rest. In the case of obstructive apnea, these episodes are related to the collapse of the pharynx, which interrupts the air flow. Currently, OSA diagnosis is done through a polysomnographic study, which focuses on the analysis of apnea episodes during sleep, requiring the patient to stay at the hospital for the whole night. The complexity and high cost of the procedures involved, combined with the waiting lists, have evidenced the need for screening techniques, which perhaps would not achieve outstanding performance rates but would allow clinicians to reorganize these lists ranking patients according to the severity of their condition. Among others, imaging diagnosis and anthropometric characterization of patients have evidenced the existence of anatomical patterns related to OSA that have direct influence on speech. Contributions devoted to the study of how this disorder affects scpeech are scarce and somehow contradictory. However, since the late 1980s the existence of specific patterns related to articulation, phonation and resonance is known. By that time these descriptions were virtually useless when coming to the development of an automatic system, but pointed out the existence of a link between speech and OSA. In recent years automatic processing techniques have evolved and are now able to identify significant differences in the speech of OSAS patients when compared to records from healthy subjects. Nevertheless, little is known about the connection between these new results with those published in the past and the pathogenesis of the OSA syndrome. This Thesis is aimed to progress beyond the previous research done in this area by addressing: the study of how OSA affects patients’ speech, the enhancement of automatic OSA classification based on speech analysis, and its integration with the information embedded in the predictors generally used by clinicians in preliminary patients’ examination. The first two tasks, though may appear symbiotic at first, are quite different. While studying the connection between speech and OSA requires simple narrow models that can be easily interpreted, classification requires larger models including a large number dimensions for the characterization and posterior identification of the observed patterns. Anyhow, it is clear that any progress made in the first task should allow us to improve our performance on the second one, and that the incorporation of the predictors used by clinicians shall contribute in this same direction. The Thesis considers both continuous and sustained speech analysis, to exploit the synergies and differences between them. On continuous speech analysis, a conventional speech processing scheme, designed and evaluated before this Thesis, was taken as a baseline. Over this initial system several alternative representations of the speech information were proposed, optimized and tested to select those more suitable for the characterization of OSA-specific patterns. Evidences were found on the existence of a connection between OSA and the fundamental constituents of the speech: the formants. Experimental results proved that the success of the proposed solution is well explained by the ability of speech representations to describe these specific OSA-related components, ignoring the noisy ones as well those presenting low discrimination capabilities. The resulting scheme obtained a 18% error rate, on a classification scheme significantly less complex than those described in the literature and operating on a single speech record. Regarding the connection between OSA and the observed patterns, it was necessary to consider inter-and intra-group differences for this analysis, and to focus on the articulation, replacing the complex classification models by the long-term average spectra. Results clearly point to certain regions on the frequency axis, suggesting the existence of a systematic narrowing in the vocal tract section at the oropharynx. This was already described in the pathogenesis of this syndrome. Regarding sustained speech, similar experiments as those conducted on continuous speech were reproduced on sustained phonations of vowel / a /. Results were qualitatively similar to the previous ones, though in this case perfomance rates were found to be noticeably lower. Trying to derive further knowledge from this result, experiments on the long-term average spectra and intraand inter-group variability ratios were also reproduced on sustained speech records. Results on both experiments showed significant differences from the previous ones obtained from continuous speech which could explain the differences observed on peformance. However, sustained speech also provided the opportunity to study phonation within the controlled framework it provides. This was also identified in the literature as a source of information for the detection of OSA. In this study it was found that, for the available dataset, no sistematic differences related to phonation could be found between the two groups of speakers. Only those dimensions which relate energy distribution along the frequency axis provided significant differences, pointing once again towards the direction of resonant components. Once classification schemes on both continuous and sustained speech were developed, the Thesis addressed their combination into a single classification system. Under the assumption that the information in continuous and sustained speech is fundamentally different, it should be possible to successfully merge the two of them. This was tested through a simple fusion scheme which obtained a 88.6% correct classification (11.4% error rate), which represents a significant improvement over the state of the art. Finally, the combination of this classifier with the variables used by clinicians obtained a 91.3% accuracy (8.7% error rate). This is within the range of alternative, but costly and intrusive schemes, which unlike the one proposed can not be used in the preliminary assessment of patients’ condition. In the end, this Thesis has shed new light on the underlying connection between OSA and speech, and evidenced the degree of maturity reached by speech technology on OSA characterization and detection, leaving the door open for future research which shall continue in the multiple directions that have been pointed out and left as future work.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
A semi-automatic segmentation algorithm for abdominal aortic aneurysms (AAA), and based on Active Shape Models (ASM) and texture models, is presented in this work. The texture information is provided by a set of four 3D magnetic resonance (MR) images, composed of axial slices of the abdomen, where lumen, wall and intraluminal thrombus (ILT) are visible. Due to the reduced number of images in the MRI training set, an ASM and a custom texture model based on border intensity statistics are constructed. For the same reason the shape is characterized from 35-computed tomography angiography (CTA) images set so the shape variations are better represented. For the evaluation, leave-one-out experiments have been held over the four MRI set.
Resumo:
Quality assessment is a key factor for stereoscopic 3D video content as some observers are affected by visual discomfort in the eye when viewing 3D video, especially when combining positive and negative parallax with fast motion. In this paper, we propose techniques to assess objective quality related to motion and depth maps, which facilitate depth perception analysis. Subjective tests were carried out in order to understand the source of the problem. Motion is an important feature affecting 3D experience but also often the cause of visual discomfort. The automatic algorithm developed tries to quantify the impact on viewer experience when common cases of discomfort occur, such as high-motion sequences, scene changes with abrupt parallax changes, or complete absence of stereoscopy, with a goal of preventing the viewer from having a bad stereoscopic experience.
Resumo:
Automatic grading of programming assignments is an important topic in academic research. It aims at improving the level of feedback given to students and optimizing the professor time. Several researches have reported the development of software tools to support this process. Then, it is helpfulto get a quickly and good sight about their key features. This paper reviews an ample set of tools forautomatic grading of programming assignments. They are divided in those most important mature tools, which have remarkable features; and those built recently, with new features. The review includes the definition and description of key features e.g. supported languages, used technology, infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis infrastructure, etc. The two kinds of tools allow making a temporal comparative analysis. This analysis shows good improvements in this research field, these include security, more language support, plagiarism detection, etc. On the other hand, the lack of a grading model for assignments is identified as an important gap in the reviewed tools. Thus, a characterization of evaluation metrics to grade programming assignments is provided as first step to get a model. Finally new paths in this research field are proposed.
Resumo:
The installers and owners show a growing interest in the follow-up of the performance of their photovoltaic (PV) systems. The owners are requesting reliable sources of information to ensure that their system is functioning properly, and the installers are actively looking for efficient ways of providing them the most useful possible information from the data available. Policy makers are becoming increasingly interested in the knowledge of the real performance of PV systems and the most frequent sources of problems that they suffer to be able to target the identified challenges properly. The scientific and industrial PV community is also requiring an access to massive operational data to pursue the technological improvements further.
Resumo:
The number and grade of injured neuroanatomic structures and the type of injury determine the degree of impairment after a brain injury event and the recovery options of the patient. However, the body of knowledge and clinical intervention guides are basically focused on functional disorder and they still do not take into account the location of injuries. The prognostic value of location information is not known in detail either. This paper proposes a feature-based detection algorithm, named Neuroanatomic-Based Detection Algorithm (NBDA), based on SURF (Speeded Up Robust Feature) to label anatomical brain structures on cortical and sub-cortical areas. Themain goal is to register injured neuroanatomic structures to generate a database containing patient?s structural impairment profile. This kind of information permits to establish a relation with functional disorders and the prognostic evolution during neurorehabilitation procedures.
Resumo:
Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.
Resumo:
We demonstrate generating complete and playable card games using evolutionary algorithms. Card games are represented in a previously devised card game description language, a context-free grammar. The syntax of this language allows us to use grammar-guided genetic programming. Candidate card games are evaluated through a cascading evaluation function, a multi-step process where games with undesired properties are progressively weeded out. Three representa- tive examples of generated games are analysed. We observed that these games are reasonably balanced and have skill ele- ments, they are not yet entertaining for human players. The particular shortcomings of the examples are discussed in re- gard to the generative process to be able to generate quality games
Resumo:
The aim of automatic pathological voice detection systems is to serve as tools, to medical specialists, for a more objective, less invasive and improved diagnosis of diseases. In this respect, the gold standard for those system include the usage of a optimized representation of the spectral envelope, either based on cepstral coefficients from the mel-scaled Fourier spectral envelope (Mel-Frequency Cepstral Coefficients) or from an all-pole estimation (Linear Prediction Coding Cepstral Coefficients) forcharacterization, and Gaussian Mixture Models for posterior classification. However, the study of recently proposed GMM-based classifiers as well as Nuisance mitigation techniques, such as those employed in speaker recognition, has not been widely considered inpathology detection labours. The present work aims at testing whether or not the employment of such speaker recognition tools might contribute to improve system performance in pathology detection systems, specifically in the automatic detection of Obstructive Sleep Apnea. The testing procedure employs an Obstructive Sleep Apnea database, in conjunction with GMM-based classifiers looking for a better performance. The results show that an improved performance might be obtained by using such approach.
Resumo:
Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.
Resumo:
Automatic Control Teaching in the new degree syllabus has reduced both, its contents and its implementation course, with regard to traditional engineering careers. On the other hand, where the qualification is not considered as automatic control specialist, it is required an adapted methodology to provide the minimum contents that the student needs to assimilate, even in the case that students do not perceive these contents as the most important in their future career. In this paper we present the contents of a small automatic course taught Naval Architecture and Marine Engineering Degrees at the School of Naval Engineering of the Polytechnic University of Madrid. We have included the contents covered using the proposed methodology which is based on practical work after lectures. Firstly, the students performed exercises by hand. Secondly, they solve the exercises using informatics support tools, and finally, they validate their previous results and their knowledge in the laboratory platforms.
Resumo:
We propose a new method to automatically refine a facial disparity map obtained with standard cameras and under conventional illumination conditions by using a smart combination of traditional computer vision and 3D graphics techniques. Our system inputs two stereo images acquired with standard (calibrated) cameras and uses dense disparity estimation strategies to obtain a coarse initial disparity map, and SIFT to detect and match several feature points in the subjects face. We then use these points as anchors to modify the disparity in the facial area by building a Delaunay triangulation of their convex hull and interpolating their disparity values inside each triangle. We thus obtain a refined disparity map providing a much more accurate representation of the the subjects facial features. This refined facial disparity map may be easily transformed, through the camera calibration parameters, into a depth map to be used, also automatically, to improve the facial mesh of a 3D avatar to match the subjects real human features.