33 resultados para remote diagnostics of electric drives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the daily temporal and spatial behavior of electric vehicles (EVs) is modelled using an activity-based (ActBM) microsimulation model for Flanders region (Belgium). Assuming that all EVs are completely charged at the beginning of the day, this mobility model is used to determine the percentage of Flemish vehicles that cannot cover their programmed daily trips and need to be recharged during the day. Assuming a variable electricity price, an optimization algorithm determines when and where EVs can be recharged at minimum cost for their owners. This optimization takes into account the individual mobility constraint for each vehicle, as they can only be charged when the car is stopped and the owner is performing an activity. From this information, the aggregated electric demand for Flanders is obtained, identifying the most overloaded areas at the critical hours. Finally it is also analyzed what activities EV owners are underway during their recharging period. From this analysis, different actions for public charging point deployment in different areas and for different activities are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El siguiente trabajo explora en primer lugar el protocolo de transmisión de datos IEC 870-5-102,el cual está definido como un estándar internacional para la transmisión de totales integrados, más tarde analizaremos su aplicación en un sistema de lectura de contadores eléctricos en remoto. Este protocolo de transmisión de datos para tele-lectura nos ayuda a solventar el problema en la construcción de un sistema de lectura para contadores eléctricos. ABSTRACT This paper explored the IEC 870-5-102 transmission protocol firstly, which is the international standard for the transmission of integrated totals, and then analyze its insufficiencies in the application of electric remote-metering system. The data transmission protocol of energy remote-metering system solves the problems in the construction of an implementation for metering the information inside meters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductive nanoparticles, especially elongated ones such as carbon nanotubes, dramatically modify the electrical behavior of liquid crystal cells. These nanoparticles are known to reorient with liquid crystals in electric fields, causing significant variations of conductivity at minute concentrations of tens or hundreds ppm. The above notwithstanding, impedance spectroscopy of doped cells in the frequency range customarily employed by liquid crystal devices, 100 Hz?10 kHz, shows a relatively simple resistor/capacitor response where the components of the cell can be univocally assigned to single components of the electrical equivalent circuit. However, widening the frequency range up to 1 MHz or beyond reveals a complex behavior that cannot be explained with the same simple EEC. Moreover, the system impedance varies with the application of electric fields, their effect remaining after removing the field. Carbon nanotubes are reoriented together with liquid crystal reorientation when applying voltage, but barely reoriented back upon liquid crystal relaxation once the voltage is removed. Results demonstrate a remarkable variation in the impedance of the dielectric blend formed by liquid crystal and carbon nanotubes, the irreversible orientation of the carbon nanotubes and possible permanent contacts between electrodes.