46 resultados para Spatial conditional autoregressive model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Bayesian approach as the model selection criteria, the main purpose in this study is to establish a practical road accident model that can provide a better interpretation and prediction performance. For this purpose we are using a structural explanatory model with autoregressive error term. The model estimation is carried out through Bayesian inference and the best model is selected based on the goodness of fit measures. To cross validate the model estimation further prediction analysis were done. As the road safety measures the number of fatal accidents in Spain, during 2000-2011 were employed. The results of the variable selection process show that the factors explaining fatal road accidents are mainly exposure, economic factors, and surveillance and legislative measures. The model selection shows that the impact of economic factors on fatal accidents during the period under study has been higher compared to surveillance and legislative measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, it has become evident the need to seek sustainable development models that address challenges arising in a variety of contexts. The resilience concept appears connected to the ability of people to cope with adversities that inevitably arise due to context dynamics, at different spatial and temporal scales. This concept is related to the model known as Working With People (WWP), focused on rural development projects planning, management and evaluation, from the integration of three dimensions: technical-entrepreneurial, ethical-social and political-contextual. The research reported is part of the RETHINK European Project, whose overall aim is farm modernization and rural resilience. The resilience concept has been analyzed, in the scope of rural development projects management, and a relationship with the WWP model has been established. To this end, a thorough review of the scientific literature concerning this topic has been addressed, in order to develop the state of the art of the different concepts and models involved. A conceptual proposal for the integration of resilience in rural development projects sustainable management, through the three-dimensional WWP model is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, organizations have plenty of data stored in DB databases, which contain invaluable information. Decision Support Systems DSS provide the support needed to manage this information and planning médium and long-term ?the modus operandi? of these organizations. Despite the growing importance of these systems, most proposals do not include its total evelopment, mostly limiting itself on the development of isolated parts, which often have serious integration problems. Hence, methodologies that include models and processes that consider every factor are necessary. This paper will try to fill this void as it proposes an approach for developing spatial DSS driven by the development of their associated Data Warehouse DW, without forgetting its other components. To the end of framing the proposal different Engineering Software focus (The Software Engineering Process and Model Driven Architecture) are used, and coupling with the DB development methodology, (and both of them adapted to DW peculiarities). Finally, an example illustrates the proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta monografía presenta los fundamentos, contexto y detalles técnicos de un Esquema de Aplicación para la incorporación de datos espaciales relativos al patrimonio cultural en el marco definido por la directiva europea INSPIRE sobre información geográfica. Abstract: This monograph presents the background, context and technical details of an Application Schema for the inclusion of cultural heritage spatial data into the INSPIRE framework. Nowadays, INSPIRE provides the most relevant framework for the dissemination and exchange of geographical data, covering many different thematic fields, particularly relevant for envi-ronmental datasets. Although cultural heritage elements are partially addressed within INSPIRE, there is no specific documentation on how these data should be considered, structured and published. This text aims to provide technical guidelines for decision makers, public administrations and the scientific community for the definition and implementation of harmonized datasets for cultural heritage, according to the interoperability principles of INSPIRE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel background modeling system that uses a spatial grid of Support Vector Machines classifiers for segmenting moving objects, which is a key step in many video-based consumer applications. The system is able to adapt to a large range of dynamic background situations since no parametric model or statistical distribution are assumed. This is achieved by using a different classifier per image region that learns the specific appearance of that scene region and its variations (illumination changes, dynamic backgrounds, etc.). The proposed system has been tested with a recent public database, outperforming other state-of-the-art algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper explores the spatial and social impacts arising from implementation of a road-pricing scheme in the Madrid Metropolitan Area (MMA). Our analytical focus is on understanding the effects of the scheme on the transport accessibility of different social groups within the MMA. We define an evaluation framework to appraise the accessibility of different districts within the MMA in terms of the actual and perceived cost of using the road infrastructure "before" and "after" the implementation of the scheme. The framework was developed using quantitative survey data and qualitative data from focus group discussions with residents. We then simulated user behaviors (mode and route choice) based on the empirical evidence from a travel demand model for the MMA. The results from our simulation model demonstrated that implementation of the toll on the orbital metropolitan motorways (M40, M30, for example) decreases accessibility, mostly in the districts where there are no viable public transport alternatives. Our key finding is that the economic burden of the road-pricing scheme particularly affects unskilled and lower income individuals living in the south of the MMA. Consequently lower income people reduce their use of tolled roads and have to find new arrangements for these trips: i.e. switch to the public transport, spend double the time for their commuter trips or stay at home. The results of our research could be applicable more widely for anyone wishing to better understand the important relationship between increased transport cost and social equity, especially where there is an intention to introduce similar road-pricing schemes within the urban context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

• Premise of the study: The presence of compatible fungi is necessary for epiphytic orchid recruitment. Thus, identifying associated mycorrhizal fungi at the population level is essential for orchid conservation. Recruitment patterns may also be conditioned by factors such as seed dispersal range and specific environmental characteristics. • Methods: In a forest plot, all trees with a diameter at breast height >1 cm and all individuals of the epiphytic orchid Epidendrum rhopalostele were identified and mapped. Additionally, one flowering individual of E. rhopalostele per each host tree was randomly selected for root sampling and DNA extraction. • Key results: A total of 239 E. rhopalostele individuals were located in 25 of the 714 potential host trees. Light microscopy of sampled roots showed mycorrhizal fungi in 22 of the 25 sampled orchids. Phylogenetic analysis of ITS1-5.8S-ITS2 sequences yielded two Tulasnella clades. In four cases, plants were found to be associated with both clades. The difference between univariate and bivariate K functions was consistent with the random labeling null model at all spatial scales, indicating that trees hosting clades A and B of Tulasnella are not spatially segregated. The analysis of the inhomogenous K function showed that host trees are not clustered, suggesting no limitations to population-scale dispersal. χ2 analysis of contingency tables showed that E. rhopalostele is more frequent on dead trees than expected. • Conclusions: Epidendrum rhopalostele establishes mycorrhizal associations with at least two different Tulasnella species. The analysis of the distribution patterns of this orchid suggests a microsite preference for dead trees and no seed dispersal limitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo presenta una solución al problema del reconocimiento del género de un rostro humano a partir de una imagen. Adoptamos una aproximación que utiliza la cara completa a través de la textura de la cara normalizada y redimensionada como entrada a un clasificador Näive Bayes. Presentamos la técnica de Análisis de Componentes Principales Probabilístico Condicionado-a-la-Clase (CC-PPCA) para reducir la dimensionalidad de los vectores de características para la clasificación y asegurar la asunción de independencia para el clasificador. Esta nueva aproximación tiene la deseable propiedad de presentar un modelo paramétrico sencillo para las marginales. Además, este modelo puede estimarse con muy pocos datos. En los experimentos que hemos desarrollados mostramos que CC-PPCA obtiene un 90% de acierto en la clasificación, resultado muy similar al mejor presentado en la literatura---ABSTRACT---This paper presents a solution to the problem of recognizing the gender of a human face from an image. We adopt a holistic approach by using the cropped and normalized texture of the face as input to a Naïve Bayes classifier. First it is introduced the Class-Conditional Probabilistic Principal Component Analysis (CC-PPCA) technique to reduce the dimensionality of the classification attribute vector and enforce the independence assumption of the classifier. This new approach has the desirable property of a simple parametric model for the marginals. Moreover this model can be estimated with very few data. In the experiments conducted we show that using CCPPCA we get 90% classification accuracy, which is similar result to the best in the literature. The proposed method is very simple to train and implement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mapping aboveground carbon density in tropical forests can support CO2 emissionmonitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador?s Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg?C? ha?1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a Finite Element Model, which has been used for forecasting the diffusion of innovations in time and space. Unlike conventional models used in diffusion literature, the model considers the spatial heterogeneity. The implementation steps of the model are explained by applying it to the case of diffusion of photovoltaic systems in a local region in southern Germany. The applied model is based on a parabolic partial differential equation that describes the diffusion ratio of photovoltaic systems in a given region over time. The results of the application show that the Finite Element Model constitutes a powerful tool to better understand the diffusion of an innovation as a simultaneous space-time process. For future research, model limitations and possible extensions are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specific numerical procedure for the analysis of arbitrary nonprismatic folded plate structures is presented. An elastic model is studied and compared with a harmonic solution for a prismatic structure. An extension to the plastic analysis is developed, and the influence of the structural geometry and loading pattern is analyzed. Nonprismatic practical cases, with arbitrary geometry and loading are shown, as well in the elastic range as in the plastic one. Finally, a dynamic formulation is outlined