43 resultados para Open Data, Bologna
Resumo:
A novel algorithm based on bimatrix game theory has been developed to improve the accuracy and reliability of a speaker diarization system. This algorithm fuses the output data of two open-source speaker diarization programs, LIUM and SHoUT, taking advantage of the best properties of each one. The performance of this new system has been tested by means of audio streams from several movies. From preliminary results on fragments of five movies, improvements of 63% in false alarms and missed speech mistakes have been achieved with respect to LIUM and SHoUT systems working alone. Moreover, we also improve in a 20% the number of recognized speakers, getting close to the real number of speakers in the audio stream
Resumo:
Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.
Resumo:
The worldwide "hyper-connection" of any object around us is the challenge that promises to cover the paradigm of the Internet of Things. If the Internet has colonized the daily life of more than 2000 million1 people around the globe, the Internet of Things faces of connecting more than 100000 million2 "things" by 2020. The underlying Internet of Things’ technologies are the cornerstone that promises to solve interrelated global problems such as exponential population growth, energy management in cities, and environmental sustainability in the average and long term. On the one hand, this Project has the goal of knowledge acquisition about prototyping technologies available in the market for the Internet of Things. On the other hand, the Project focuses on the development of a system for devices management within a Wireless Sensor and Actuator Network to offer some services accessible from the Internet. To accomplish the objectives, the Project will begin with a detailed analysis of various “open source” hardware platforms to encourage creative development of applications, and automatically extract information from the environment around them for transmission to external systems. In addition, web platforms that enable mass storage with the philosophy of the Internet of Things will be studied. The project will culminate in the proposal and specification of a service-oriented software architecture for embedded systems that allows communication between devices on the network, and the data transmission to external systems. Furthermore, it abstracts the complexities of hardware to application developers. RESUMEN. La “hiper-conexión” a nivel mundial de cualquier objeto que nos rodea es el desafío al que promete dar cobertura el paradigma de la Internet de las Cosas. Si la Internet ha colonizado el día a día de más de 2000 millones1 de personas en todo el planeta, la Internet de las Cosas plantea el reto de conectar a más de 100000 millones2 de “cosas” para el año 2020. Las tecnologías subyacentes de la Internet de las Cosas son la piedra angular que prometen dar solución a problemas globales interrelacionados como el crecimiento exponencial de la población, la gestión de la energía en las ciudades o la sostenibilidad del medioambiente a largo plazo. Este Proyecto Fin de Carrera tiene como principales objetivos por un lado, la adquisición de conocimientos acerca de las tecnologías para prototipos disponibles en el mercado para la Internet de las Cosas, y por otro lado el desarrollo de un sistema para la gestión de dispositivos de una red inalámbrica de sensores que ofrezcan unos servicios accesibles desde la Internet. Con el fin de abordar los objetivos marcados, el proyecto comenzará con un análisis detallado de varias plataformas hardware de tipo “open source” que estimulen el desarrollo creativo de aplicaciones y que permitan extraer de forma automática información del medio que les rodea para transmitirlo a sistemas externos para su posterior procesamiento. Por otro lado, se estudiarán plataformas web identificadas con la filosofía de la Internet de las Cosas que permitan el almacenamiento masivo de datos que diferentes plataformas hardware transfieren a través de la Internet. El Proyecto culminará con la propuesta y la especificación una arquitectura software orientada a servicios para sistemas empotrados que permita la comunicación entre los dispositivos de la red y la transmisión de datos a sistemas externos, así como facilitar el desarrollo de aplicaciones a los programadores mediante la abstracción de la complejidad del hardware.
Resumo:
This paper will present an open-source simulation tool, which is being developed in the frame of an European research project1. The tool, whose final version will be freely available through a website, allows the modelling and the design of different types of grid-connected PV systems, such as large grid-connected plants and building-integrated installations. The tool is based on previous software developed by the IES-UPM2, whose models and energy losses scenarios have been validated in the commissioning of PV projects3 carried out in Spain, Portugal, France and Italy, whose aggregated capacity is nearly 300MW. This link between design and commissioning is one of the key points of tool presented here, which is not usually addressed by present commercial software. The tool provides, among other simulation results, the energy yield, the analysis and breakdown of energy losses, and the estimations of financial returns adapted to the legal and financial frameworks of each European country. Besides, educational facilities will be developed and integrated in the tool, not only devoted to learn how to use this software, but also to train the users on the best design PV systems practices. The tool will also include the recommendation of several PV community experts, which have been invited to identify present necessities in the field of PV systems simulation. For example, the possibility of using meteorological forecasts as input data, or modelling the integration of large energy storage systems, such as vanadium redox or lithium-ion batteries. Finally, it is worth mentioning that during the verification and testing stages of this software development, it will be also open to the suggestions received from the different actors of the PV community, such as promoters, installers, consultants, etc.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.
Resumo:
Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.
Resumo:
In this article, we argue that there is a growing number of linked datasets in different natural languages, and that there is a need for guidelines and mechanisms to ensure the quality and organic growth of this emerging multilingual data network. However, we have little knowledge regarding the actual state of this data network, its current practices, and the open challenges that it poses. Questions regarding the distribution of natural languages, the links that are established across data in different languages, or how linguistic features are represented, remain mostly unanswered. Addressing these and other language-related issues can help to identify existing problems, propose new mechanisms and guidelines or adapt the ones in use for publishing linked data including language-related features, and, ultimately, provide metrics to evaluate quality aspects. In this article we review, discuss, and extend current guidelines for publishing linked data by focusing on those methods, techniques and tools that can help RDF publishers to cope with language barriers. Whenever possible, we will illustrate and discuss each of these guidelines, methods, and tools on the basis of practical examples that we have encountered in the publication of the datos.bne.es dataset.
Resumo:
A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
Contents: - Center for Open Middleware - POSDATA project - User modeling - Some early results - @posdata service
Resumo:
The application of Linked Data technology to the publication of linguistic data promises to facilitate interoperability of these data and has lead to the emergence of the so called Linguistic Linked Data Cloud (LLD) in which linguistic data is published following the Linked Data principles. Three essential issues need to be addressed for such data to be easily exploitable by language technologies: i) appropriate machine-readable licensing information is needed for each dataset, ii) minimum quality standards for Linguistic Linked Data need to be defined, and iii) appropriate vocabularies for publishing Linguistic Linked Data resources are needed. We propose the notion of Licensed Linguistic Linked Data (3LD) in which different licensing models might co-exist, from totally open to more restrictive licenses through to completely closed datasets.
Resumo:
Enterprises are increasingly using a wide range of heterogeneous information systems for executing and governing their business activities. Even if the adoption of service orientation has improved loose coupling and reusability, applications are still isolated data silos whose integration requires complex transformations and mediations. However, by leveraging Linked Data principles those data silos can now be seamlessly integrated, and this opens the door to new data-driven approaches for Enterprise Application Integration (EAI). In this paper we present LDP4j, an open souce Java-based framework for the development of interoperable read-write Linked Data applications, based on the W3C Linked Data Platform (LDP) specification.
Resumo:
Multiple indicators are of interest in smart cities at different scales and for different stakeholders. In open environments, such as The Web, or when indicator information has to be interchanged across systems, contextual information (e.g., unit of measurement, measurement method) should be transmitted together with the data and the lack of such information might cause undesirable effects. Describing the data by means of ontologies increases interoperability among datasets and applications. However, methodological guidance is crucial during ontology development in order to transform the art of modeling in an engineering activity. In the current paper, we present a methodological approach for modelling data about Key Performance Indicators and their context with an application example of such guidelines.