477 resultados para Ingeniería industrial-Enseñanza-México


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The railway overhead (or catenary) is the system of cables responsible for providing electric current to the train. This system has been reported as wind-sensitive (Scanlon et al., 2000), and particularly to the occurrence of galloping phenomena. Galloping phenomena of the railway overhead consists of undamped cable oscillations triggered by aerodynamic forces acting on the contact wire. As is well known, aerodynamic loads on the contact wire depends on the incident flow mean velocity and the angle of attack. The presence of embankments or hills modifies both vertical velocities profiles and angles of attack of the flow (Paiva et al., 2009). The presence of these cross-wind related oscillations can interfere with the safe operation of the railway service (Johnson, 1996). Therefore a correct modelling of the phenomena is required to avoid these unwanted oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detailed study of the deterioration suffered by the materials of the components of a nuclear facility, in particular those forming part of the reactor core, is a topic of great interest which importance derives in large technological and economic implications. Since changes in the atomic-structural properties of relevant components pose a risk to the smooth operation with clear consequences for security and life of the plant, controlling these factors is essential in any development of engineering design and implementation. In recent times, tungsten has been proposed as a structural material based on its good resistance to radiation, but still needs to be done an extensive study on the influence of temperature on the behavior of this material under radiation damage. This work aims to contribute in this regard. Molecular Dynamics (MD) simulations were carried out to determine the influence of temperature fluctuations on radiation damage production and evolution in Tungsten. We have particularly focused our study in the dynamics of defect creation, recombination, and diffusion properties. PKA energies were sampled in a range from 5 to 50 KeV. Three different temperature scenarios were analyzed, from very low temperatures (0-200K), up to high temperature conditions (300-500 K). We studied the creation of defects, vacancies and interstitials, recombination rates, diffusion properties, cluster formation, their size and evolution. Simulations were performed using Lammps and the Zhou EAM potential for W

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los aspectos relacionados con el transporte de residuos radiactivos de alta actividad (RAA) hacia el futuro almacén temporal centralizado (ATC) están de actualidad, por el propio trasiego que se espera en un futuro próximo, el compromiso adquirido de estas actividades con el medio ambiente, la seguridad de las personas [1], así como su normativa reguladora. En España se prevé una larga “ruta radiactiva” de más de 2.000 kilómetros, por la que el combustible nuclear gastado se transportará presumiblemente por carretera desde las centrales nucleares hasta el ATC, así como los residuos vitrificados procedentes del reprocesado del combustible de la central nuclear Vandellos I, que en la actualidad están en Francia. Proponemos como hipótesis el siniestro de uno de estos transportes con combustible nuclear gastado en una ruta definida y nos preguntamos: ¿Qué impacto radiológico se podría generar en el medio ambiente o en individuos tipo cercanos al siniestro, el público en general…?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements. 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There exists an interest in performing full core pin-by-pin computations for present nuclear reactors. In such type of problems the use of a transport approximation like the diffusion equation requires the introduction of correction parameters. Interface discontinuity factors can improve the diffusion solution to nearly reproduce a transport solution. Nevertheless, calculating accurate pin-by-pin IDF requires the knowledge of the heterogeneous neutron flux distribution, which depends on the boundary conditions of the pin-cell as well as the local variables along the nuclear reactor operation. As a consequence, it is impractical to compute them for each possible configuration. An alternative to generate accurate pin-by-pin interface discontinuity factors is to calculate reference values using zero-net-current boundary conditions and to synthesize afterwards their dependencies on the main neighborhood variables. In such way the factors can be accurately computed during fine-mesh diffusion calculations by correcting the reference values as a function of the actual environment of the pin-cell in the core. In this paper we propose a parameterization of the pin-by-pin interface discontinuity factors allowing the implementation of a cross sections library able to treat the neighborhood effect. First results are presented for typical PWR configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interface discontinuity factors based on the Generalized Equivalence Theory are commonly used in nodal homogenized diffusion calculations so that diffusion average values approximate heterogeneous higher order solutions. In this paper, an additional form of interface correction factors is presented in the frame of the Analytic Coarse Mesh Finite Difference Method (ACMFD), based on a correction of the modal fluxes instead of the physical fluxes. In the ACMFD formulation, implemented in COBAYA3 code, the coupled multigroup diffusion equations inside a homogenized region are reduced to a set of uncoupled modal equations through diagonalization of the multigroup diffusion matrix. Then, physical fluxes are transformed into modal fluxes in the eigenspace of the diffusion matrix. It is possible to introduce interface flux discontinuity jumps as the difference of heterogeneous and homogeneous modal fluxes instead of introducing interface discontinuity factors as the ratio of heterogeneous and homogeneous physical fluxes. The formulation in the modal space has been implemented in COBAYA3 code and assessed by comparison with solutions using classical interface discontinuity factors in the physical space

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermalhydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. The limitations encountered in the application of the Analytic Coarse Mesh Finite Difference (ACMFD) method –implemented inside ANDES– to fast reactors are presented and the sensitivity of the method when using a high number of energy groups is studied. ANDES performance is assessed by comparison with the results provided by ERANOS, using a mini-core model in 33 energy groups. Furthermore, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry and 4 energy groups is also employed to verify the behavior of the code with few energy groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Technofusion is the scientific&technical installation for fusion research in Spain, based on three pillars: • It is an open facility to European users. • It is a facility with instrumentation not accesible to small research groups. • It is designed to be closely coordiated with the European Fusion Program. With a budget of 80-100 M€ over five years, several top laboratories will be constructed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing importance of pollutant noise has led to the creation of many new noise testing laboratories in recent years. For this reason and due to the legal implications that noise reporting may have, it is necessary to create procedures intended to guarantee the quality of the testing and its results. For instance, the ISO/IEC standard 17025:2005 specifies general requirements for the competence of testing laboratories. In this standard, interlaboratory comparisons are one of the main measures that must be applied to guarantee the quality of laboratories when applying specific methodologies for testing. In the specific case of environmental noise, round robin tests are usually difficult to design, as it is difficult to find scenarios that can be available and controlled while the participants carry out the measurements. Monitoring and controlling the factors that can influence the measurements (source emissions, propagation, background noise…) is not usually affordable, so the most extended solution is to create very effortless scenarios, where most of the factors that can have an influence on the results are excluded (sampling, processing of results, background noise, source detection…) The new approach described in this paper only requires the organizer to make actual measurements (or prepare virtual ones). Applying and interpreting a common reference document (standard, regulation…), the participants must analyze these input data independently to provide the results, which will be compared among the participants. The measurement costs are severely reduced for the participants, there is no need to monitor the scenario conditions, and almost any relevant factor can be included in this methodology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noise maps are usually represented as contour or isolines maps describing the sound levels in a region. Using this kind of representation the user can easily find the noise level assigned to every location in the map. But the acoustic calculations behind the map are not performed for every single location on it; they are only performed in a grid of receivers. The results in this calculation grid are interpolated to draw the isolines or contours. Therefore, the resolution of the calculation grid and the way it was created (rectangular, triangulated, random…) have an effect on the resulting map. In this paper we describe a smart iterative procedure to optimize the quality of the map at a really low additional computational cost, using self-adaptive grids for the acoustic calculations. These self-adaptive grids add new receivers to the sampling grid in those locations where they are expected to be more useful, so that the performance at the output of the interpolator is enhanced. Self-adaptive sampling grids can be used for minimizing the overall error of the map (improving its quality), or for reducing calculation times, and can be also applied selectively to target areas or contour lines. This can be done by the user customizing the maximum number of iterations, the number of new receivers for each iteration, the target isolines, the target quality…

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a theoretical analysis of possible jitter impact in application of numeric criterion for fastmeasurement of frequency by coincidence principle. The primary goal is the generation of a signal containing a known amount of each jitter components. This signal was used for testing signals with regular pulse trains. Initially, jitter components are analyzed and modeled individually. Next, sequences for combining different kinds of jitter are modeled, simulated and evaluated. Jitter model simulation in Matlab is utilized to show the independence of frequencymeasurement results on the total jitter present in the reference and desired pulse trains independently. A good agreement between previously introduced theory of fastmeasurement of frequency and simulation in jitter presence is verified; these results allows to engineers use the numeric criterion for fastmeasurement of frequency in spite to interactions among jitter components in various applications for frequency domain sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work that here is summarized, it is classed on the area of dynamics and measures of railway safety, specifically in the study of the influence of the cross wind on the high-speed trains as well as the study of new mitigation measures like wind breaking structures or wind fences, with optimized shapes. The work has been developed in the Research Center in Rail Technology (CITEF), and supported by the Universidad Politécnica de Madrid, Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to satisfy the safety-critical requirements, the train control system (TCS) often employs a layered safety communication protocol to provide reliable services. However, both description and verification of the safety protocols may be formidable due to the system complexity. In this paper, interface automata (IA) are used to describe the safety service interface behaviors of safety communication protocol. A formal verification method is proposed to describe the safety communication protocols using IA and translate IA model into PROMELA model so that the protocols can be verified by the model checker SPIN. A case study of using this method to describe and verify a safety communication protocol is included. The verification results illustrate that the proposed method is effective to describe the safety protocols and verify deadlocks, livelocks and several mandatory consistency properties. A prototype of safety protocols is also developed based on the presented formally verifying method.