59 resultados para Effects-Based Approach to Operations
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
We argüe that in order to exploit both Independent And- and Or-parallelism in Prolog programs there is advantage in recomputing some of the independent goals, as opposed to all their solutions being reused. We present an abstract model, called the Composition-Tree, for representing and-or parallelism in Prolog Programs. The Composition-tree closely mirrors sequential Prolog execution by recomputing some independent goals rather than fully re-using them. We also outline two environment representation techniques for And-Or parallel execution of full Prolog based on the Composition-tree model abstraction. We argüe that these techniques have advantages over earlier proposals for exploiting and-or parallelism in Prolog.
Resumo:
We present the design of a distributed object system for Prolog, based on adding remote execution and distribution capabilities to a previously existing object system. Remote execution brings RPC into a Prolog system, and its semantics is easy to express in terms of well-known Prolog builtins. The final distributed object design features state mobility and user-transparent network behavior. We sketch an implementation which provides distributed garbage collection and some degree of tolerance to network failures. We provide a preliminary study of the overhead of the communication mechanism for some test cases.
Resumo:
A reliability approach to tunnel support design is presented in this paper. The aim of the work is the incorporation of classical Level II techniques to the current design method based on the study of the ground-support interaction diagram.
Resumo:
The new user cold start issue represents a serious problem in recommender systems as it can lead to the loss of new users who decide to stop using the system due to the lack of accuracy in the recommenda- tions received in that first stage in which they have not yet cast a significant number of votes with which to feed the recommender system?s collaborative filtering core. For this reason it is particularly important to design new similarity metrics which provide greater precision in the results offered to users who have cast few votes. This paper presents a new similarity measure perfected using optimization based on neu- ral learning, which exceeds the best results obtained with current metrics. The metric has been tested on the Netflix and Movielens databases, obtaining important improvements in the measures of accuracy, precision and recall when applied to new user cold start situations. The paper includes the mathematical formalization describing how to obtain the main quality measures of a recommender system using leave- one-out cross validation.
Resumo:
Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.
Resumo:
Commercial computer-aided design systems support the geometric definition of product, but they lack utilities to support initial design stages. Typical tasks such as customer need capture, functional requirement formalization, or design parameter definition are conducted in applications that, for instance, support ?quality function deployment? and ?failure modes and effects analysis? techniques. Such applications are noninteroperable with the computer-aided design systems, leading to discontinuous design information flows. This study addresses this issue and proposes a method to enhance the integration of design information generated in the early design stages into a commercial computer-aided design system. To demonstrate the feasibility of the approach adopted, a prototype application was developed and two case studies were executed.
Resumo:
An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.
Resumo:
In this conceptual paper, we discuss two areas of research in robotics, robotic models of emotion and morphofunctional machines, and we explore the scope for potential cross-fertilization between them. We shift the focus in robot models of emotion from information-theoretic aspects of appraisal to the interactive significance of bodily dispositions. Typical emotional phenomena such as arousal and action readiness can be interpreted as morphofunctional processes, and their functionality may be replicated in robotic systems with morphologies that can be modulated for real-time adaptation. We investigate the control requirements for such systems, and present a possible bio-inspired architecture, based on the division of control between neural and endocrine systems in humans and animals. We suggest that emotional epi- sodes can be understood as emergent from the coordination of action control and action-readiness, respectively. This stress on morphology complements existing research on the information-theoretic aspects of emotion.
Resumo:
The presented work proposes a new approach for anomaly detection. This approach is based on changes in a population of evolving agents under stress. If conditions are appropriate, changes in the population (modeled by the bioindicators) are representative of the alterations to the environment. This approach, based on an ecological view, improves functionally traditional approaches to the detection of anomalies. To verify this assertion, experiments based on Network Intrussion Detection Systems are presented. The results are compared with the behaviour of other bioinspired approaches and machine learning techniques.
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
The Kolmogorov approach to turbulence is applied to the Burgers turbulence in the stochastic adhesion model of large-scale structure formation. As the perturbative approach to this model is unreliable, here a new, non-perturbative approach, based on a suitable formulation of Kolmogorov's scaling laws, is proposed. This approach suggests that the power-law exponent of the matter density two-point correlation function is in the range 1–1.33, but it also suggests that the adhesion model neglects important aspects of the gravitational dynamics.
Resumo:
A linear method is developed for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. This method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. This method is applied to a minimal thermal model of a satellite with ten isothermal parts (nodes), and the method is compared with direct numerical integration of the nonlinear equations. The computational complexity of this method is briefly studied for general thermal models of orbiting spacecraft, and it is concluded that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.
Resumo:
Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.
Resumo:
Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.