28 resultados para uniform storng consistency
Resumo:
Beghini et al (Struct Multidisc Optim doi:10.1007/s00158-013-1030-6, 2013) have published a very interesting paper arriving to practically the same nearly optimal solutions for the so named “bridge prob- lem” that the Writers published a year before, but using an alternative and remarkable approach to the problem. In spite of this general agreement, the Writers think that some details of the paper can be improved and there are results that can be given a clear and mean- ingful interpretation thanks to an old and practically unknown theorem on optimal slenderness.
Resumo:
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
A numerical method providing the optimal laser intensity profiles for a direct-drive inertial confinement fusion scheme has been developed. The method provides an alternative approach to phase-space optimization studies, which can prove computationally expensive. The method applies to a generic irradiation configuration characterized by an arbitrary number NB of laser beams provided that they irradiate the whole target surface, and thus goes beyond previous analyses limited to symmetric configurations. The calculated laser intensity profiles optimize the illumination of a spherical target. This paper focuses on description of the method, which uses two steps: first, the target irradiation is calculated for initial trial laser intensities, and then in a second step the optimal laser intensities are obtained by correcting the trial intensities using the calculated illumination. A limited number of example applications to direct drive on the Laser MegaJoule (LMJ) are described.
Resumo:
This paper try to prove how artisans c ould discover all uniform tilings and very interesting others us ing artisanal combinatorial pro cedures without having to use mathematical procedures out of their reac h. Plane Geometry started up his way through History by means of fundamental drawing tools: ruler and co mpass. Artisans used same tools to carry out their orna mental patterns but at some point they began to work manually using physical representations of fi gures or tiles previously drawing by means of ruler and compass. That is an important step for craftsman because this way provides tools that let him come in the world of symmetry opera tions and empirical knowledge of symmetry groups. Artisans started up to pr oduce little wooden, ceramic or clay tiles and began to experiment with them by means of joining pieces whether edge to edge or vertex to vertex in that way so it can c over the plane without gaps. Economy in making floor or ceramic tiles could be most important reason to develop these procedures. This empiric way to develop tilings led not only to discover all uniform tilings but later discovering of aperiodic tilings.
Resumo:
In this paper, the authors introduce a novel mechanism for data management in a middleware for smart home control, where a relational database and semantic ontology storage are used at the same time in a Data Warehouse. An annotation system has been designed for instructing the storage format and location, registering new ontology concepts and most importantly, guaranteeing the Data Consistency between the two storage methods. For easing the data persistence process, the Data Access Object (DAO) pattern is applied and optimized to enhance the Data Consistency assurance. Finally, this novel mechanism provides an easy manner for the development of applications and their integration with BATMP. Finally, an application named "Parameter Monitoring Service" is given as an example for assessing the feasibility of the system.
Resumo:
We develop general closed-form expressions for the mutual gravitational potential, resultant and torque acting upon a rigid tethered system moving in a non-uniform gravity field produced by an attracting body with revolution symmetry, such that an arbitrary number of zonal harmonics is considered. The final expressions are series expansion in two small parameters related to the reference radius of the primary and the length of the tether, respectively, each of which are scaled by the mutual distance between their centers of mass. A few numerical experiments are performed to study the convergence behavior of the final expressions, and conclude that for high precision applications it might be necessary to take into account additional perturbation terms, which come from the mutual Two-Body interaction.
Resumo:
Because of the high number of crashes occurring on highways, it is necessary to intensify the search for new tools that help in understanding their causes. This research explores the use of a geographic information system (GIS) for an integrated analysis, taking into account two accident-related factors: design consistency (DC) (based on vehicle speed) and available sight distance (ASD) (based on visibility). Both factors require specific GIS software add-ins, which are explained. Digital terrain models (DTMs), vehicle paths, road centerlines, a speed prediction model, and crash data are integrated in the GIS. The usefulness of this approach has been assessed through a study of more than 500 crashes. From a regularly spaced grid, the terrain (bare ground) has been modeled through a triangulated irregular network (TIN). The length of the roads analyzed is greater than 100 km. Results have shown that DC and ASD could be related to crashes in approximately 4% of cases. In order to illustrate the potential of GIS, two crashes are fully analyzed: a car rollover after running off road on the right side and a rear-end collision of two moving vehicles. Although this procedure uses two software add-ins that are available only for ArcGIS, the study gives a practical demonstration of the suitability of GIS for conducting integrated studies of road safety.
Resumo:
Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for evaluating consistency from non-invasive brain recordings. We evaluate the consistency of the cortical activity recorded with magnetoencephalography in a group of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics to evaluate the consistency of cortical regions. A representation known as parenclitic networks is constructed, where atypical features are endowed with a network structure, the topological properties of which can be studied at various scales. Pathological conditions correspond to strongly heterogeneous networks, whereas typical or normative conditions are characterized by sparsely connected networks with homogeneous nodes. The analysis of this kind of networks allows identifying the extent to which consistency is affected in the MCI group and the focal points where MCI is especially severe. To the best of our knowledge, these results represent the first attempt at evaluating the consistency of brain functional activity using complex networks theory.
Resumo:
This paper presents the impact of non-homogeneous deposits of dust on the performance of a PV array. The observations have been made in a 2-MW PV park in the southeast region of Spain. The results are that inhomogeneous dust leads to more significant consequences than the mere short-circuit current reduction resulting from transmittance losses. In particular, when the affected PV modules are part of a string together with other cleaned (or less dusty) ones, operation voltage losses arise. These voltage losses can be several times larger than the short-circuit ones, leading to power losses that can be much larger than what measurements suggest when the PV modules are considered separately. Significant hot-spot phenomena can also arise leading to cells exhibiting temperature differences of more than 20 degrees and thus representing a threat to the PV modules' lifetime.
Resumo:
The International Workshop on Nitride Semiconductors (IWN) is a biennial academic conference in the field of group III nitride research. The IWN and the International Conference on Nitride Semiconductors (ICNS) are held in alternating years and cover similar subject areas.
Resumo:
This paper try to prove how artisans c ould discover all uniform tilings and very interesting others us ing artisanal combinatorial pro cedures without having to use mathematical procedures out of their reac h. Plane Geometry started up his way through History by means of fundamental drawing tools: ruler and co mpass. Artisans used same tools to carry out their orna mental patterns but at some point they began to work manually using physical representations of fi gures or tiles previously drawing by means of ruler and compass. That is an important step for craftsman because this way provides tools that let him come in the world of symmetry opera tions and empirical knowledge of symmetry groups. Artisans started up to pr oduce little wooden, ceramic or clay tiles and began to experiment with them by means of joining pieces whether edge to edge or vertex to vertex in that way so it can c over the plane without gaps. Economy in making floor or ceramic tiles could be most important reason to develop these procedures. This empiric way to develop tilings led not only to discover all uniform tilings but later discovering of aperiodic tilings.
Resumo:
Although the primary objective on designing a structure is to support the external loads, the achievement of an optimal layout that reduces all costs associated with the structure is an aspect of increasing interest. The problem of finding the optimal layout for bridgelike structures subjected to a uniform load is considered. The problem is formulated following a theory on economy of frame structures, using the stress volume as the objective function and including the selection of appropriate values for statically indeterminate reactions. It is solved in a function space of finite dimension instead of using a general variational approach, obtaining near-optimal solutions. The results obtained with this profitable strategy are very close to the best layouts known to date, with differences of less than 2% for the stress volume, but with a simpler layout that can be recognized in some real bridges. This strategy could be a guide to preliminary design of bridges subject to a wide class of costs.