22 resultados para transitive calibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NIR Hyperspectral imaging (1000-2500 nm) combined with IDC allowed the detection of peanut traces down to adulteration percentages 0.01% Contrary to PLSR, IDC does not require a calibration set, but uses both expert and experimental information and suitable for quantification of an interest compound in complex matrices. The obtained results shows the feasibility of using HSI systems for the detection of peanut traces in conjunction with chemical procedures, such as RT-PCR and ELISA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study analyses the differences between two calculation models for guardrails on building sites that use wooden boards and tubular steel posts. Wood was considered an isotropic material in one model and an orthotropic material in a second model. The elastic constants of the wood were obtained with ultrasound. Frequencies and vibration modes were obtained for both models through linear analysis using the finite element method. The two models were experimentally calibrated through operational modal analysis. The results obtained show that for the three types of wood under analysis, the model which considered them as an orthotropic material fitted the experimental results better than the model which considered them as an isotropic material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflectance anisotropy spectroscopy (RAS) was employed to determine the optimal specific molar flow of Sb needed to grow GaInP with a given order parameter by MOVPE. The RAS signature of GaInP surfaces exposed to different Sb/P molar flow ratios were recorded, and the RAS peak at 3.02 eV provided a feature that was sensitive to the amount of Sb on the surface. The range of Sb/P ratios over which Sb acts as a surfactant was determined using the RA intensity of this peak, and different GaInP layers were grown using different Sb/P ratios. The order parameter of the resulting layers was measured by PL at 20 K. This procedure may be extensible to the calibration of surfactant-mediated growth of other materials exhibiting characteristic RAS signatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CENTURY soil organic matter model was adapted for the DSSAT (Decision Support System for Agrotechnology Transfer), modular format in order to better simulate the dynamics of soil organic nutrient processes (Gijsman et al., 2002). The CENTURY model divides the soil organic carbon (SOC) into three hypothetical pools: microbial or active material (SOC1), intermediate (SOC2) and the largely inert and stable material (SOC3) (Jones et al., 2003). At the beginning of the simulation, CENTURY model needs a value of SOC3 per soil layer which can be estimated by the model (based on soil texture and management history) or given as an input. Then, the model assigns about 5% and 95% of the remaining SOC to SOC1 and SOC2, respectively. The model performance when simulating SOC and nitrogen (N) dynamics strongly depends on the initialization process. The common methods (e.g. Basso et al., 2011) to initialize SOC pools deal mostly with carbon (C) mineralization processes and less with N. Dynamics of SOM, SOC, and soil organic N are linked in the CENTURY-DSSAT model through the C/N ratio of decomposing material that determines either mineralization or immobilization of N (Gijsman et al., 2002). The aim of this study was to evaluate an alternative method to initialize the SOC pools in the DSSAT-CENTURY model from apparent soil N mineralization (Napmin) field measurements by using automatic inverse calibration (simulated annealing). The results were compared with the ones obtained by the iterative initialization procedure developed by Basso et al., 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model of the process employed by a sonic anemometer to build up the measured wind vector in a steady flow is presented to illustrate the way the geometry of these sensors as well as the characteristics of aerodynamic disturbance on the acoustic path can lead to singularities in the transformation function that relates the measured (disturbed) wind vector with the real (corrected) wind vector, impeding the application of correction/calibration functions for some wind conditions. An implicit function theorem allows for the identification of those combinations of real wind conditions and design parameters that lead to undefined correction/ calibration functions. In general, orthogonal path sensors do not show problematic combination of parameters. However, some geometric sonic sensor designs, available in the market, with paths forming smaller angles could lead to undefined correction functions for some levels of aerodynamic disturbances and for certain wind directions. The parameters studied have a strong influence on the existence and number of singularities in the correction/ calibration function as well as on the number of singularities for some combination of parameters. Some conclusions concerning good design practices are included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accelerometers used for the measurement of microvibrations or microgravity applications, such as active control of space structures, attitude control, scientific payloads, or even on-Earth testing of structures at very low-excitation levels, require a dedicated calibration procedure that includes the gravitational effects. Otherwise, on-Earth calibrations can be inaccurate due to the collateral projection of the local gravity onto the sensitive axis. An on-Earth calibration technique for the 107102s amplitude range and 0-100-Hz frequency range is described. Special attention has been given to the modeling of gravitational effects on the response of the calibration device and the accelerometer itself. The sensitivity and resolution tests performed on piezoelectric accelerometers showthe accuracy andthe potential of thistechnique. Typical scale factorun certainty, which hasbeen carefully analyzed, is of the order of 2% at acceleration levels of 10sg.