41 resultados para static nodes
Resumo:
Many applications in several domains such as telecommunications, network security, large scale sensor networks, require online processing of continuous data lows. They produce very high loads that requires aggregating the processing capacity of many nodes. Current Stream Processing Engines do not scale with the input load due to single-node bottlenecks. Additionally, they are based on static con?gurations that lead to either under or over-provisioning. In this paper, we present StreamCloud, a scalable and elastic stream processing engine for processing large data stream volumes. StreamCloud uses a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. Its elastic protocols exhibit low intrusiveness, enabling effective adjustment of resources to the incoming load. Elasticity is combined with dynamic load balancing to minimize the computational resources used. The paper presents the system design, implementation and a thorough evaluation of the scalability and elasticity of the fully implemented system.
Resumo:
A pressure wave is generated when a high speed train enters a tunnel. This wave travels along the tunnel back and forth, and is reflected at the irregularities of the tunnel duct (section changes, chimneys and tunnel ends). The pressure changes are associated to these waves can have an effect on passengers if the trains are not suitably sealed or pressurized. The intensity of the waves depends mainly on the train speed, and on the blockage ratio (train-section-to- tunnel-section area ratio). As the intensity of the waves is limited by regulations, and also by the effects on passengers and infrastructures, the sizing of the tunnel section area is largely influenced by the maximum train speed allowed in the tunnel. The aim of this study is to analyse the increase in cost in a tunnel due to the existence of this difference in ground level, and evaluate the increase of construction costs that this elevation might involve.
Resumo:
In this work a complete hardware-software support platform for a WSN testbed focused on developing wireless sensor applications in a simple and intuitive way is presented, as an alternative of commercial-motes-based testbeds that can be found in the state of the art. The main target of this hardware-software platform is to provide the highest abstraction level on the management of WSNs but in the simplest way in order to achieve a fast profiling mechanism for reliable prototyping based on the Cookies platform as well as helping users to develop, test and validate Cookie-Based WSN applications.
Resumo:
In this work a complete set of libraries for developing wireless sensor applications in a simple and intuitive way is presented, in contraposition to the most spread application abstraction-level mechanisms based on operating systems. The main target of this software platform, named CookieLibs, is to provide the highest abstraction level on the management of WSNs but in the simplest way for those users who are not familiar with software design, in order to achieve a fast profiling mechanism for reliable prototyping based on the Cookies platform.
Resumo:
In this work a novel wake-up architecture for wireless sensor nodes based on ultra low power FPGA is presented. A simple wake up messaging mechanism for data gathering applications is proposed. The main goal of this work is to evaluate the utilization of low power configurable devices to take advantage of their speed, flexibility and low power consumption compared with traditional approaches, based on ASICs or microcontrollers, for frame decoding and data control. A test bed based on infrared communications has been built to validate the messaging mechanism and the processing architecture.
Resumo:
Digital services and communications in vehicular scenarios provide the essential assets to improve road transport in several ways like reducing accidents, improving traffic efficiency and optimizing the transport of goods and people. Vehicular communications typically rely on VANET (Vehicular Ad hoc Networks). In these networks vehicles communicate with each other without the need of infrastructure. VANET are mainly oriented to disseminate information to the vehicles in certain geographic area for time critical services like safety warnings but present very challenging requirements that have not been successfully fulfilled nowadays. Some of these challenges are; channel saturation due to simultaneous radio access of many vehicles, routing protocols in topologies that vary rapidly, minimum quality of service assurance and security mechanisms to efficiently detect and neutralize malicious attacks. Vehicular services can be classified in four important groups: Safety, Efficiency, Sustainability and Infotainment. The benefits of these services for the transport sector are clear but many technological and business challenges need to be faced before a real mass market deployment. Service delivery platforms are not prepared for fulfilling the needs of this complex environment with restrictive requirements due to the criticism of some services To overcome this situation, we propose a solution called VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS leverages on IMS subsystem and NGN enablers, and follows the CALM reference Architecture standardized by ISO. It also avoids the use of Road Side Units (RSUs), reducing complexity and high costs in terms of deployment and maintenance. We demonstrate the benefits in the following areas: 1. VANET networks efficiency. VISIONS provide a mechanism for the vehicles to access valuable information from IMS and its capabilities through a cellular channel. This efficiency improvement will occur in two relevant areas: a. Routing mechanisms. These protocols are responsible of carrying information from a vehicle to another (or a group of vehicles) using multihop mechanisms. We do not propose a new algorithm but the use of VANET topology information provided through our solution to enrich the performance of these protocols. b. Security. Many aspects of security (privacy, key, authentication, access control, revocation mechanisms, etc) are not resolved in vehicular communications. Our solution efficiently disseminates revocation information to neutralize malicious nodes in the VANET. 2. Service delivery platform. It is based on extended enablers, reference architectures, standard protocols and open APIs. By following this approach, we reduce costs and resources for service development, deployment and maintenance. To quantify these benefits in VANET networks, we provide an analytical model of the system and simulate our solution in realistic scenarios. The simulations results demonstrate how VISIONS improves the performance of relevant routing protocols and is more efficient neutralizing security attacks than the widely proposed solutions based on RSUs. Finally, we design an innovative Social Network service based in our platform, explaining how VISIONS facilitate the deployment and usage of complex capabilities. RESUMEN Los servicios digitales y comunicaciones en entornos vehiculares proporcionan herramientas esenciales para mejorar el transporte por carretera; reduciendo el número de accidentes, mejorando la eficiencia del tráfico y optimizando el transporte de mercancías y personas. Las comunicaciones vehiculares generalmente están basadas en redes VANET (Vehicular Ad hoc Networks). En dichas redes, los vehículos se comunican entre sí sin necesidad de infraestructura. Las redes VANET están principalmente orientadas a difundir información (por ejemplo advertencias de seguridad) a los vehículos en determinadas zonas geográficas, pero presentan unos requisitos muy exigentes que no se han resuelto con éxito hasta la fecha. Algunos de estos retos son; saturación del canal de acceso de radio debido al acceso simultáneo de múltiples vehículos, la eficiencia de protocolos de encaminamiento en topologías que varían rápidamente, la calidad de servicio (QoS) y los mecanismos de seguridad para detectar y neutralizar los ataques maliciosos de manera eficiente. Los servicios vehiculares pueden clasificarse en cuatro grupos: Seguridad, Eficiencia del tráfico, Sostenibilidad, e Infotainment (información y entretenimiento). Los beneficios de estos servicios para el sector son claros, pero es necesario resolver muchos desafíos tecnológicos y de negocio antes de una implementación real. Las actuales plataformas de despliegue de servicios no están preparadas para satisfacer las necesidades de este complejo entorno con requisitos muy restrictivos debido a la criticidad de algunas aplicaciones. Con el objetivo de mejorar esta situación, proponemos una solución llamada VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS se basa en el subsistema IMS, las capacidades NGN y es compatible con la arquitectura de referencia CALM estandarizado por ISO para sistemas de transporte. También evita el uso de elementos en las carreteras, conocidos como Road Side Units (RSU), reduciendo la complejidad y los altos costes de despliegue y mantenimiento. A lo largo de la tesis, demostramos los beneficios en las siguientes áreas: 1. Eficiencia en redes VANET. VISIONS proporciona un mecanismo para que los vehículos accedan a información valiosa proporcionada por IMS y sus capacidades a través de un canal de celular. Dicho mecanismo contribuye a la mejora de dos áreas importantes: a. Mecanismos de encaminamiento. Estos protocolos son responsables de llevar información de un vehículo a otro (o a un grupo de vehículos) utilizando múltiples saltos. No proponemos un nuevo algoritmo de encaminamiento, sino el uso de información topológica de la red VANET a través de nuestra solución para enriquecer el funcionamiento de los protocolos más relevantes. b. Seguridad. Muchos aspectos de la seguridad (privacidad, gestión de claves, autenticación, control de acceso, mecanismos de revocación, etc) no están resueltos en las comunicaciones vehiculares. Nuestra solución difunde de manera eficiente la información de revocación para neutralizar los nodos maliciosos en la red. 2. Plataforma de despliegue de servicios. Está basada en capacidades NGN, arquitecturas de referencia, protocolos estándar y APIs abiertos. Siguiendo este enfoque, reducimos costes y optimizamos procesos para el desarrollo, despliegue y mantenimiento de servicios vehiculares. Para cuantificar estos beneficios en las redes VANET, ofrecemos un modelo de analítico del sistema y simulamos nuestra solución en escenarios realistas. Los resultados de las simulaciones muestran cómo VISIONS mejora el rendimiento de los protocolos de encaminamiento relevantes y neutraliza los ataques a la seguridad de forma más eficientes que las soluciones basadas en RSU. Por último, diseñamos un innovador servicio de red social basado en nuestra plataforma, explicando cómo VISIONS facilita el despliegue y el uso de las capacidades NGN.
Resumo:
Systems used for target localization, such as goods, individuals, or animals, commonly rely on operational means to meet the final application demands. However, what would happen if some means were powered up randomly by harvesting systems? And what if those devices not randomly powered had their duty cycles restricted? Under what conditions would such an operation be tolerable in localization services? What if the references provided by nodes in a tracking problem were distorted? Moreover, there is an underlying topic common to the previous questions regarding the transfer of conceptual models to reality in field tests: what challenges are faced upon deploying a localization network that integrates energy harvesting modules? The application scenario of the system studied is a traditional herding environment of semi domesticated reindeer (Rangifer tarandus tarandus) in northern Scandinavia. In these conditions, information on approximate locations of reindeer is as important as environmental preservation. Herders also need cost-effective devices capable of operating unattended in, sometimes, extreme weather conditions. The analyses developed are worthy not only for the specific application environment presented, but also because they may serve as an approach to performance of navigation systems in absence of reasonably accurate references like the ones of the Global Positioning System (GPS). A number of energy-harvesting solutions, like thermal and radio-frequency harvesting, do not commonly provide power beyond one milliwatt. When they do, battery buffers may be needed (as it happens with solar energy) which may raise costs and make systems more dependent on environmental temperatures. In general, given our problem, a harvesting system is needed that be capable of providing energy bursts of, at least, some milliwatts. Many works on localization problems assume that devices have certain capabilities to determine unknown locations based on range-based techniques or fingerprinting which cannot be assumed in the approach considered herein. The system presented is akin to range-free techniques, but goes to the extent of considering very low node densities: most range-free techniques are, therefore, not applicable. Animal localization, in particular, uses to be supported by accurate devices such as GPS collars which deplete batteries in, maximum, a few days. Such short-life solutions are not particularly desirable in the framework considered. In tracking, the challenge may times addressed aims at attaining high precision levels from complex reliable hardware and thorough processing techniques. One of the challenges in this Thesis is the use of equipment with just part of its facilities in permanent operation, which may yield high input noise levels in the form of distorted reference points. The solution presented integrates a kinetic harvesting module in some nodes which are expected to be a majority in the network. These modules are capable of providing power bursts of some milliwatts which suffice to meet node energy demands. The usage of harvesting modules in the aforementioned conditions makes the system less dependent on environmental temperatures as no batteries are used in nodes with harvesters--it may be also an advantage in economic terms. There is a second kind of nodes. They are battery powered (without kinetic energy harvesters), and are, therefore, dependent on temperature and battery replacements. In addition, their operation is constrained by duty cycles in order to extend node lifetime and, consequently, their autonomy. There is, in turn, a third type of nodes (hotspots) which can be static or mobile. They are also battery-powered, and are used to retrieve information from the network so that it is presented to users. The system operational chain starts at the kinetic-powered nodes broadcasting their own identifier. If an identifier is received at a battery-powered node, the latter stores it for its records. Later, as the recording node meets a hotspot, its full record of detections is transferred to the hotspot. Every detection registry comprises, at least, a node identifier and the position read from its GPS module by the battery-operated node previously to detection. The characteristics of the system presented make the aforementioned operation own certain particularities which are also studied. First, identifier transmissions are random as they depend on movements at kinetic modules--reindeer movements in our application. Not every movement suffices since it must overcome a certain energy threshold. Second, identifier transmissions may not be heard unless there is a battery-powered node in the surroundings. Third, battery-powered nodes do not poll continuously their GPS module, hence localization errors rise even more. Let's recall at this point that such behavior is tight to the aforementioned power saving policies to extend node lifetime. Last, some time is elapsed between the instant an identifier random transmission is detected and the moment the user is aware of such a detection: it takes some time to find a hotspot. Tracking is posed as a problem of a single kinetically-powered target and a population of battery-operated nodes with higher densities than before in localization. Since the latter provide their approximate positions as reference locations, the study is again focused on assessing the impact of such distorted references on performance. Unlike in localization, distance-estimation capabilities based on signal parameters are assumed in this problem. Three variants of the Kalman filter family are applied in this context: the regular Kalman filter, the alpha-beta filter, and the unscented Kalman filter. The study enclosed hereafter comprises both field tests and simulations. Field tests were used mainly to assess the challenges related to power supply and operation in extreme conditions as well as to model nodes and some aspects of their operation in the application scenario. These models are the basics of the simulations developed later. The overall system performance is analyzed according to three metrics: number of detections per kinetic node, accuracy, and latency. The links between these metrics and the operational conditions are also discussed and characterized statistically. Subsequently, such statistical characterization is used to forecast performance figures given specific operational parameters. In tracking, also studied via simulations, nonlinear relationships are found between accuracy and duty cycles and cluster sizes of battery-operated nodes. The solution presented may be more complex in terms of network structure than existing solutions based on GPS collars. However, its main gain lies on taking advantage of users' error tolerance to reduce costs and become more environmentally friendly by diminishing the potential amount of batteries that can be lost. Whether it is applicable or not depends ultimately on the conditions and requirements imposed by users' needs and operational environments, which is, as it has been explained, one of the topics of this Thesis.
Resumo:
Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.
Resumo:
This paper describes the authors? experience with static analysis of both WCET and stack usage of a satellite on-board software subsystem. The work is a continuation of a previous case study that used a dynamic WCET analysis tool on an earlier version of the same software system. In particular, the AbsInt aiT tool has been evaluated by analysing both C and Ada code generated by Simulink within the UPMSat-2 project. Some aspects of the aiT tool, specifically those dealing with SPARC register windows, are compared to another static analysis tool, Bound-T. The results of the analysis are discussed, and some conclusions on the use of static WCET analysis tools on the SPARC architecture are commented in the paper.
Resumo:
This paper presents a numerical implementation of the cohesive crack model for the anal-ysis of quasibrittle materials based on the strong discontinuity approach in the framework of the finite element method. A simple central force model is used for the stress versus crack opening curve. The additional degrees of freedom defining the crack opening are determined at the crack level, thus avoiding the need for performing a static condensation at the element level. The need for a tracking algorithm is avoided by using a consistent pro-cedure for the selection of the separated nodes. Such a model is then implemented into a commercial program by means of a user subroutine, consequently being contrasted with the experimental results. The model takes into account the anisotropy of the material. Numerical simulations of well-known experiments are presented to show the ability of the proposed model to simulate the fracture of quasibrittle materials such as mortar, concrete and masonry.
Resumo:
A heterogeneous network, mainly based on nodes that use harvested energy to self-energize is presented and its use demonstrated. The network, mostly kinetically powered, has been used for the localization of herds in grazing areas under extreme climate conditions. The network consists of secondary and primary nodes. The former, powered by a kinetic generator, take advantage of animal movements to broadcast a unique identifier. The latter are battery-powered and gather secondarynode transmitted information to provide it, along with position and time data, to a final base station in charge of the animal monitoring. Because a limited human interaction is desirable, the aim of this network is to reduce the battery count of the system.
Resumo:
In this work a WSN Support Tool for developing, testing, monitoring and debugging new application prototypes in a reliable and robust way is proposed, by combining a Hardware -Software Integration Platform with the implementation of a parallel communication channel that helps users to interact to the experiments in runtime without interfering in the operation of the wireless network. As a pre-deployment tool, prototypes can be validated in a real environment before implementing them in the final application, aiming to increase the effectiveness and efficiency of the technology. This infrastructure is the support of CookieLab: a WSN testbed based on the Cookie Nodes Platform.
Resumo:
A stress phase space is proposed to compare the static packings of a granular system (microstates) that are compatible to a macrostate described by external stresses. The equivalent stress of each particle of a static packing can be obtained from the mechanical interaction forces, and the associated volume is given by the respective Voronoi cell. Therefore, particles can be located at different stress levels and grouped into categories or configurations, which are defined in base of the geometrical features of the local arrangement (in particular, of the number of forces that keep them force-balanced). They can be represented as points in a stress phase space. The nature of this space is analyzed in detail. The integration limits of the stress variables that avoid or limit tensile states and the capability of each configuration to represent specific stress states establish its main features. Furthermore, if some stress variables are used, instead of the usual components of the Cauchy stress tensor, then some symmetries can be found. Results obtained from molecular dynamics simulations are used to check this nature. Finally, some statistical ensembles are written in terms of the coordinates of this phase space. These require some assumptions that are made in base on continuum mechanics principles.
Resumo:
The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.
Resumo:
We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable conditions, such centrality measures exist and are unique. Computer experiments and simulations demonstrate that the proposed measures provide substantially different results when applied to the same multiplex structure, and highlight the non-trivial relationships between the different measures of centrality introduced.