25 resultados para network traffic analysis
Resumo:
Las redes son la esencia de comunidades y sociedades humanas; constituyen el entramado en el que nos relacionamos y determinan cómo lo hacemos, cómo se disemina la información o incluso cómo las cosas se llevan a cabo. Pero el protagonismo de las redes va más allá del que adquiere en las redes sociales. Se encuentran en el seno de múltiples estructuras que conocemos, desde las interaciones entre las proteínas dentro de una célula hasta la interconexión de los routers de internet. Las redes sociales están presentes en internet desde sus principios, en el correo electrónico por tomar un ejemplo. Dentro de cada cliente de correo se manejan listas contactos que agregadas constituyen una red social. Sin embargo, ha sido con la aparición de los sitios web de redes sociales cuando este tipo de aplicaciones web han llegado a la conciencia general. Las redes sociales se han situado entre los sitios más populares y con más tráfico de la web. Páginas como Facebook o Twitter manejan cifras asombrosas en cuanto a número de usuarios activos, de tráfico o de tiempo invertido en el sitio. Pero las funcionalidades de red social no están restringidas a las redes sociales orientadas a contactos, aquellas enfocadas a construir tu lista de contactos e interactuar con ellos. Existen otros ejemplos de sitios que aprovechan las redes sociales para aumentar la actividad de los usuarios y su involucración alrededor de algún tipo de contenido. Estos ejemplos van desde una de las redes sociales más antiguas, Flickr, orientada al intercambio de fotografías, hasta Github, la red social de código libre más popular hoy en día. No es una casualidad que la popularidad de estos sitios web venga de la mano de sus funcionalidades de red social. El escenario es más rico aún, ya que los sitios de redes sociales interaccionan entre ellos, compartiendo y exportando listas de contactos, servicios de autenticación y proporcionando un valioso canal para publicitar la actividad de los usuarios en otros sitios web. Esta funcionalidad es reciente y aún les queda un paso hasta que las redes sociales superen su condición de bunkers y lleguen a un estado de verdadera interoperabilidad entre ellas, tal como funcionan hoy en día el correo electrónico o la mensajería instantánea. Este trabajo muestra una tecnología que permite construir sitios web con características de red social distribuída. En primer lugar, se presenta una tecnología para la construcción de un componente intermedio que permite proporcionar cualquier característica de gestión de contenidos al popular marco de desarrollo web modelo-vista-controlador (MVC) Ruby on Rails. Esta técnica constituye una herramienta para desarrolladores que les permita abstraerse de las complejidades de la gestión de contenidos y enfocarse en las particularidades de los propios contenidos. Esta técnica se usará también para proporcionar las características de red social. Se describe una nueva métrica de reusabilidad de código para demostrar la validez del componente intermedio en marcos MVC. En segundo lugar, se analizan las características de los sitios web de redes sociales más populares, con el objetivo de encontrar los patrones comunes que aparecen en ellos. Este análisis servirá como base para definir los requisitos que debe cumplir un marco para construir redes sociales. A continuación se propone una arquitectura de referencia que proporcione este tipo de características. Dicha arquitectura ha sido implementada en un componente, Social Stream, y probada en varias redes sociales, tanto orientadas a contactos como a contenido, en el contexto de una asociación vecinal tanto como en proyectos de investigación financiados por la UE. Ha sido la base de varios proyectos fin de carrera. Además, ha sido publicado como código libre, obteniendo una comunidad creciente y está siendo usado más allá del ámbito de este trabajo. Dicha arquitectura ha permitido la definición de un nuevo modelo de control de acceso social que supera varias limitaciones presentes en los modelos de control de acceso para redes sociales. Más aún, se han analizado casos de estudio de sitios de red social distribuídos, reuniendo un conjunto de caraterísticas que debe cumplir un marco para construir redes sociales distribuídas. Por último, se ha extendido la arquitectura del marco para dar cabida a las características de redes sociales distribuídas. Su implementación ha sido validada en proyectos de investigación financiados por la UE. Abstract Networks are the substance of human communities and societies; they constitute the structural framework on which we relate to each other and determine the way we do it, the way information is diseminated or even the way people get things done. But network prominence goes beyond the importance it acquires in social networks. Networks are found within numerous known structures, from protein interactions inside a cell to router connections on the internet. Social networks are present on the internet since its beginnings, in emails for example. Inside every email client, there are contact lists that added together constitute a social network. However, it has been with the emergence of social network sites (SNS) when these kinds of web applications have reached general awareness. SNS are now among the most popular sites in the web and with the higher traffic. Sites such as Facebook and Twitter hold astonishing figures of active users, traffic and time invested into the sites. Nevertheless, SNS functionalities are not restricted to contact-oriented social networks, those that are focused on building your own list of contacts and interacting with them. There are other examples of sites that leverage social networking to foster user activity and engagement around other types of content. Examples go from early SNS such as Flickr, the photography related networking site, to Github, the most popular social network repository nowadays. It is not an accident that the popularity of these websites comes hand-in-hand with their social network capabilities The scenario is even richer, due to the fact that SNS interact with each other, sharing and exporting contact lists and authentication as well as providing a valuable channel to publize user activity in other sites. These interactions are very recent and they are still finding their way to the point where SNS overcome their condition of data silos to a stage of full interoperability between sites, in the same way email and instant messaging networks work today. This work introduces a technology that allows to rapidly build any kind of distributed social network website. It first introduces a new technique to create middleware that can provide any kind of content management feature to a popular model-view-controller (MVC) web development framework, Ruby on Rails. It provides developers with tools that allow them to abstract from the complexities related with content management and focus on the development of specific content. This same technique is also used to provide the framework with social network features. Additionally, it describes a new metric of code reuse to assert the validity of the kind of middleware that is emerging in MVC frameworks. Secondly, the characteristics of top popular SNS are analysed in order to find the common patterns shown in them. This analysis is the ground for defining the requirements of a framework for building social network websites. Next, a reference architecture for supporting the features found in the analysis is proposed. This architecture has been implemented in a software component, called Social Stream, and tested in several social networks, both contact- and content-oriented, in local neighbourhood associations and EU-founded research projects. It has also been the ground for several Master’s theses. It has been released as a free and open source software that has obtained a growing community and that is now being used beyond the scope of this work. The social architecture has enabled the definition of a new social-based access control model that overcomes some of the limitations currenly present in access control models for social networks. Furthermore, paradigms and case studies in distributed SNS have been analysed, gathering a set of features for distributed social networking. Finally the architecture of the framework has been extended to support distributed SNS capabilities. Its implementation has also been validated in EU-founded research projects.
Resumo:
Sight distance is of major importance for road safety either when designing new roads or analysing the alignment of existing roads. It is essential that available sight distance in roads is long enough for emergency stops or overtaking manoeuvres. Also, it is vital for engineers/researchers that the tools used for that analysis are both powerful and intuitive. Based on ArcGIS, the application to be presented not only performs an exhaustive sight distance calculation, but allows an accurate analysis of 3D alignment, using all new tools, from a Digital Elevation Model and vehicle trajectory. The software has been successfully utilised to analyse several two-lane rural roads in Spain. In addition, the software produces thematic maps representing sight distance in which supplementary information about crashes, traffic flow, speed or design consistency could be included, allowing traffic safety studies.
Resumo:
Public Private Partnerships (PPPs) are mostly implemented for three reasons: to circumvent budgetary constraints, encourage efficiency and improvement of quality in the provision of public infrastructure. One of the ways of reaching the latter objective is by the introduction of performance-based standards tied to bonuses and penalties to reward or punish the performance of the contractor. These performance based standards often refer to different aspects such as technical, environmental and safety issues. This paper focuses on the implementation of safety based incentives in PPPs. The main aim of this paper is to analyze whether the incentives to improve road safety in PPPs are effective in improving safety ratios in Spain. To this end, negative binomial regression models have been applied using information from the Spanish high capacity network in 2006. The findings indicate that even though road safety is highly influenced by variables that are not much controllable by the contractor such as the Average Annual Daily Traffic and the percentage of heavy vehicles in the highway, the implementation of safety incentives in PPPs has a positive influence in the reduction of fatalities, injuries and accidents.
Resumo:
*************************************************************************************** EL WCTR es un Congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte que hasta el 2010 publicaba sus libros de abstracts con ISBN. Por ello consideramos que debería seguir teníendose en cuenta para los indicadores de calidad ******************************************************************************************* Investment projects in the field of transportation infrastructures have a high degree of uncertainty and require an important amount of resources. In highway concessions in particular, the calculation of the Net Present Value (NPV) of the project by means of the discount of cash flows, may lead to erroneous results when the project incorporates certain flexibility. In these cases, the theory of real options is an alternative tool for the valuation of concessions. When the variable that generates uncertainty (in our case, the traffic) follows a random walk (or Geometric Brownian Motion), we can calculate the value of the options embedded in the contract starting directly from the process followed by that variable. This procedure notably simplifies the calculation method. In order to test the hypothesis of the evolution of traffic as a Geometric Brownian Motion, we have used the available series of traffic in Spanish highways, and we have applied the Augmented Dickey-Fuller approach, which is the most widely used test for this kind of study. The main result of the analysis is that we cannot reject the hypothesis that traffic follows a Geometric Brownian Motion in the majority of both toll highways and free highways in Spain.
Resumo:
In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification.
Resumo:
Current worldwide building legislation requirements aim to the design and construction of technical services that reduce energy consumption and improve indoor hygrothermal conditions. The retail sector in Spain, with a lot of outdated technical systems, demands energy conservation measures in order to reduce the increasingly electrical consumption for cooling. Climatic separation with modern air curtains and advanced hygrothermal control systems enables energy savings and can keep suitable indoor air temperature and humidity of stores with intense pedestrian traffic, especially when located in hot humid climates. As stated in the article, the energy savings in commercial buildings with these systems exceeds 30%
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
One of the biggest challenges that software developers face is to make an accurate estimate of the project effort. Radial basis function neural networks have been used to software effort estimation in this work using NASA dataset. This paper evaluates and compares radial basis function versus a regression model. The results show that radial basis function neural network have obtained less Mean Square Error than the regression method.
Resumo:
Esta tesis se centra en el análisis de dos aspectos complementarios de la ciberdelincuencia (es decir, el crimen perpetrado a través de la red para ganar dinero). Estos dos aspectos son las máquinas infectadas utilizadas para obtener beneficios económicos de la delincuencia a través de diferentes acciones (como por ejemplo, clickfraud, DDoS, correo no deseado) y la infraestructura de servidores utilizados para gestionar estas máquinas (por ejemplo, C & C, servidores explotadores, servidores de monetización, redirectores). En la primera parte se investiga la exposición a las amenazas de los ordenadores victimas. Para realizar este análisis hemos utilizado los metadatos contenidos en WINE-BR conjunto de datos de Symantec. Este conjunto de datos contiene metadatos de instalación de ficheros ejecutables (por ejemplo, hash del fichero, su editor, fecha de instalación, nombre del fichero, la versión del fichero) proveniente de 8,4 millones de usuarios de Windows. Hemos asociado estos metadatos con las vulnerabilidades en el National Vulnerability Database (NVD) y en el Opens Sourced Vulnerability Database (OSVDB) con el fin de realizar un seguimiento de la decadencia de la vulnerabilidad en el tiempo y observar la rapidez de los usuarios a remiendar sus sistemas y, por tanto, su exposición a posibles ataques. Hemos identificado 3 factores que pueden influir en la actividad de parches de ordenadores victimas: código compartido, el tipo de usuario, exploits. Presentamos 2 nuevos ataques contra el código compartido y un análisis de cómo el conocimiento usuarios y la disponibilidad de exploit influyen en la actividad de aplicación de parches. Para las 80 vulnerabilidades en nuestra base de datos que afectan código compartido entre dos aplicaciones, el tiempo entre el parche libera en las diferentes aplicaciones es hasta 118 das (con una mediana de 11 das) En la segunda parte se proponen nuevas técnicas de sondeo activos para detectar y analizar las infraestructuras de servidores maliciosos. Aprovechamos técnicas de sondaje activo, para detectar servidores maliciosos en el internet. Empezamos con el análisis y la detección de operaciones de servidores explotadores. Como una operación identificamos los servidores que son controlados por las mismas personas y, posiblemente, participan en la misma campaña de infección. Hemos analizado un total de 500 servidores explotadores durante un período de 1 año, donde 2/3 de las operaciones tenían un único servidor y 1/2 por varios servidores. Hemos desarrollado la técnica para detectar servidores explotadores a diferentes tipologías de servidores, (por ejemplo, C & C, servidores de monetización, redirectores) y hemos logrado escala de Internet de sondeo para las distintas categorías de servidores maliciosos. Estas nuevas técnicas se han incorporado en una nueva herramienta llamada CyberProbe. Para detectar estos servidores hemos desarrollado una novedosa técnica llamada Adversarial Fingerprint Generation, que es una metodología para generar un modelo único de solicitud-respuesta para identificar la familia de servidores (es decir, el tipo y la operación que el servidor apartenece). A partir de una fichero de malware y un servidor activo de una determinada familia, CyberProbe puede generar un fingerprint válido para detectar todos los servidores vivos de esa familia. Hemos realizado 11 exploraciones en todo el Internet detectando 151 servidores maliciosos, de estos 151 servidores 75% son desconocidos a bases de datos publicas de servidores maliciosos. Otra cuestión que se plantea mientras se hace la detección de servidores maliciosos es que algunos de estos servidores podrán estar ocultos detrás de un proxy inverso silente. Para identificar la prevalencia de esta configuración de red y mejorar el capacidades de CyberProbe hemos desarrollado RevProbe una nueva herramienta a través del aprovechamiento de leakages en la configuración de la Web proxies inversa puede detectar proxies inversos. RevProbe identifica que el 16% de direcciones IP maliciosas activas analizadas corresponden a proxies inversos, que el 92% de ellos son silenciosos en comparación con 55% para los proxies inversos benignos, y que son utilizado principalmente para equilibrio de carga a través de múltiples servidores. ABSTRACT In this dissertation we investigate two fundamental aspects of cybercrime: the infection of machines used to monetize the crime and the malicious server infrastructures that are used to manage the infected machines. In the first part of this dissertation, we analyze how fast software vendors apply patches to secure client applications, identifying shared code as an important factor in patch deployment. Shared code is code present in multiple programs. When a vulnerability affects shared code the usual linear vulnerability life cycle is not anymore effective to describe how the patch deployment takes place. In this work we show which are the consequences of shared code vulnerabilities and we demonstrate two novel attacks that can be used to exploit this condition. In the second part of this dissertation we analyze malicious server infrastructures, our contributions are: a technique to cluster exploit server operations, a tool named CyberProbe to perform large scale detection of different malicious servers categories, and RevProbe a tool that detects silent reverse proxies. We start by identifying exploit server operations, that are, exploit servers managed by the same people. We investigate a total of 500 exploit servers over a period of more 13 months. We have collected malware from these servers and all the metadata related to the communication with the servers. Thanks to this metadata we have extracted different features to group together servers managed by the same entity (i.e., exploit server operation), we have discovered that 2/3 of the operations have a single server while 1/3 have multiple servers. Next, we present CyberProbe a tool that detects different malicious server types through a novel technique called adversarial fingerprint generation (AFG). The idea behind CyberProbe’s AFG is to run some piece of malware and observe its network communication towards malicious servers. Then it replays this communication to the malicious server and outputs a fingerprint (i.e. a port selection function, a probe generation function and a signature generation function). Once the fingerprint is generated CyberProbe scans the Internet with the fingerprint and finds all the servers of a given family. We have performed a total of 11 Internet wide scans finding 151 new servers starting with 15 seed servers. This gives to CyberProbe a 10 times amplification factor. Moreover we have compared CyberProbe with existing blacklists on the internet finding that only 40% of the server detected by CyberProbe were listed. To enhance the capabilities of CyberProbe we have developed RevProbe, a reverse proxy detection tool that can be integrated with CyberProbe to allow precise detection of silent reverse proxies used to hide malicious servers. RevProbe leverages leakage based detection techniques to detect if a malicious server is hidden behind a silent reverse proxy and the infrastructure of servers behind it. At the core of RevProbe is the analysis of differences in the traffic by interacting with a remote server.