34 resultados para ductility
Condicionantes de la adherencia y anclaje en el refuerzo de muros de fábrica con elementos de fibras
Resumo:
Es cada vez más frecuente la rehabilitación de patrimonio construido, tanto de obras deterioradas como para la adecuación de obras existentes a nuevos usos o solicitaciones. Se ha considerado el estudio del refuerzo de obras de fábrica ya que constituyen un importante número dentro del patrimonio tanto de edificación como de obra civil (sistemas de muros de carga o en estructuras principales porticadas de acero u hormigón empleándose las fábricas como cerramiento o distribución con elementos autoportantes). A la hora de reparar o reforzar una estructura es importante realizar un análisis de las deficiencias, caracterización mecánica del elemento y solicitaciones presentes o posibles; en el apartado 1.3 del presente trabajo se refieren acciones de rehabilitación cuando lo que se precisa no es refuerzo estructural, así como las técnicas tradicionales más habituales para refuerzo de fábricas que suelen clasificarse según se trate de refuerzos exteriores o interiores. En los últimos años se ha adoptado el sistema de refuerzo de FRP, tecnología con origen en los refuerzos de hormigón tanto de elementos a flexión como de soportes. Estos refuerzos pueden ser de láminas adheridas a la fábrica soporte (SM), o de barras incluidas en rozas lineales (NSM). La elección de un sistema u otro depende de la necesidad de refuerzo y tipo de solicitación predominante, del acceso para colocación y de la exigencia de impacto visual. Una de las mayores limitaciones de los sistemas de refuerzo por FRP es que no suele movilizarse la resistencia del material de refuerzo, produciéndose previamente fallo en la interfase con el soporte con el consecuente despegue o deslaminación; dichos fallos pueden tener un origen local y propagarse a partir de una discontinuidad, por lo que es preciso un tratamiento cuidadoso de la superficie soporte, o bien como consecuencia de una insuficiente longitud de anclaje para la transferencia de los esfuerzos en la interfase. Se considera imprescindible una caracterización mecánica del elemento a reforzar. Es por ello que el trabajo presenta en el capítulo 2 métodos de cálculo de la fábrica soporte de distintas normativas y también una formulación alternativa que tiene en cuenta la fábrica histórica ya que su caracterización suele ser más complicada por la heterogeneidad y falta de clasificación de sus materiales, especialmente de los morteros. Una vez conocidos los parámetros resistentes de la fábrica soporte es posible diseñar el refuerzo; hasta la fecha existe escasa normativa de refuerzos de FRP para muros de fábrica, consistente en un protocolo propuesto por la ACI 440 7R-10 que carece de mejoras por tipo de anclaje y aporta valores muy conservadores de la eficacia del refuerzo. Como se ha indicado, la problemática principal de los refuerzos de FRP en muros es el modo de fallo que impide un aprovechamiento óptimo de las propiedades del material. Recientemente se están realizando estudios con distintos métodos de anclaje para estos refuerzos, con lo que se incremente la capacidad última y se mantenga el soporte ligado al refuerzo tras la rotura. Junto con sistemas de anclajes por prolongación del refuerzo (tanto para láminas como para barras) se han ensayado anclajes con llaves de cortante, barras embebidas, o anclajes mecánicos de acero o incluso de FRP. Este texto resume, en el capítulo 4, algunas de las campañas experimentales llevadas a cabo entre los años 2000 y 2013 con distintos anclajes. Se observan los parámetros fundamentales para medir la eficacia del anclajes como son: el modo de fallo, el incremento de resistencia, y los desplazamientos que permite observar la ductilidad del refuerzo; estos datos se analizan en función de la variación de: tipo de refuerzo incluyéndose el tipo de fibra y sistema de colocación, y tipo de anclaje. Existen también parámetros de diseño de los propios anclajes. En el caso de barras embebidas se resumen en diámetro y material de la barra, acabado superficial, dimensiones y forma de la roza, tipo de adhesivo. En el caso de anclajes de FRP tipo pasador la caracterización incluye: tipo de fibra, sistema de fabricación del anclajes y diámetro del mismo, radio de expansión del abanico, espaciamiento longitudinal de anclajes, número de filas de anclajes, número de láminas del refuerzo, longitud adherida tras el anclaje; es compleja la sistematización de resultados de los autores de las campañas expuestas ya que algunos de estos parámetros varían impidiendo la comparación. El capítulo 5 presenta los ensayos empleados para estas campañas de anclajes, distinguiéndose entre ensayos de modo I, tipo tracción directa o arrancamiento, que servirían para sistemas NSM o para cuantificar la resistencia individual de anclajes tipo pasador; ensayos de modo II, tipo corte simple, que se asemeja más a las condiciones de trabajo de los refuerzos. El presente texto se realiza con objeto de abrir una posible investigación sobre los anclajes tipo pasador, considerándose que junto con los sistemas de barra embebida son los que permiten una mayor versatilidad de diseño para los refuerzos de FRP y siendo su eficacia aún difícil de aislar por el número de parámetros de diseño. Rehabilitation of built heritage is becoming increasingly frequent, including repair of damaged works and conditioning for a new use or higher loads. In this work it has been considered the study of masonry wall reinforcement, as most buildings and civil works have load bearing walls or at least infilled masonry walls in concrete and steel structures. Before repairing or reinforcing an structure, it is important to analyse its deficiencies, its mechanical properties and both existing and potential loads; chapter 1, section 4 includes the most common rehabilitation methods when structural reinforcement is not needed, as well as traditional reinforcement techniques (internal and external reinforcement) In the last years the FRP reinforcement system has been adopted for masonry walls. FRP materials for reinforcement were initially used for concrete pillars and beams. FRP reinforcement includes two main techniques: surface mounted laminates (SM) and near surface mounted bars (NSM); one of them may be more accurate according to the need for reinforcement and main load, accessibility for installation and aesthetic requirements. One of the main constraints of FRP systems is not reaching maximum load for material due to premature debonding failure, which can be caused by surface irregularities so surface preparation is necessary. But debonding (or delamination for SM techniques) can also be a consequence of insufficient anchorage length or stress concentration. In order to provide an accurate mechanical characterisation of walls, chapter 2 summarises the calculation methods included in guidelines as well as alternative formulations for old masonry walls as historic wall properties are more complicated to obtain due to heterogeneity and data gaps (specially for mortars). The next step is designing reinforcement system; to date there are scarce regulations for walls reinforcement with FRP: ACI 440 7R-10 includes a protocol without considering the potential benefits provided by anchorage devices and with conservative values for reinforcement efficiency. As noted above, the main problem of FRP masonry walls reinforcement is failure mode. Recently, some authors have performed studies with different anchorage systems, finding that these systems are able to delay or prevent debonding . Studies include the following anchorage systems: Overlap, embedded bars, shear keys, shear restraint and fiber anchors. Chapter 4 briefly describes several experimental works between years 2000 and 2013, concerning different anchorage systems. The main parameters that measure the anchorage efficiency are: failure mode, failure load increase, displacements (in order to evaluate the ductility of the system); all these data points strongly depend on: reinforcement system, FRP fibers, anchorage system, and also on the specific anchorage parameters. Specific anchorage parameters are a function of the anchorage system used. The embedded bar system have design variables which can be identified as: bar diameter and material, surface finish, groove dimensions, and adhesive. In FRP anchorages (spikes) a complete design characterisation should include: type of fiber, manufacturing process, diameter, fan orientation, anchor splay width, anchor longitudinal spacing and number or rows, number or FRP sheet plies, bonded length beyond anchorage devices,...the parameters considered differ from some authors to others, so the comparison of results is quite complicated. Chapter 5 includes the most common tests used in experimental investigations on bond-behaviour and anchorage characterisation: direct shear tests (with variations single-shear and double-shear), pullout tests and bending tests. Each of them may be used according to the data needed. The purpose of this text is to promote further investigation of anchor spikes, accepting that both FRP anchors and embedded bars are the most versatile anchorage systems of FRP reinforcement and considering that to date its efficiency cannot be evaluated as there are too many design uncertainties.
Resumo:
A methodology has been developed for characterising the mechanical behaviour of concrete, based on the damaged plasticity model, enriched with a user subroutine (V)USDFLD in order to capture better the ductility of the material under moderate confining pressures. The model has been applied in the context of the international benchmark IRIS_2012, organised by the OECD/NEA/CSNI Nuclear Energy Agency, dealing with impacts of rigid and deformable missiles against reinforced concrete targets. A slightly modified version of the concrete damaged plasticity model was used to represent the concrete. The simulation results matched very well the observations made during the actual tests. Particularly successful predictions involved the energy spent by the rigid missile in perforating the target, the crushed length of the deformable missile, the crushed and cracked areas of the concrete target, and the values of the strains recorded at a number of locations in the concrete slab.
Resumo:
A significant number of short-to-mid height RC buildings with wide beams have been constructed in areas of moderate seismicity of Spain, mainly for housing and administrative use. The buildings have a framed structure with one-way slabs; the wide beams constitute the distinctive characteristic, their depth being equal to that of the rest of the slab, thus providing a flat lower surface, convenient for construction and the layout of facilities. Seismic behavior in the direction of the wide beams appears to be deficient because of: (i) low lateral strength, mainly because of the small effective depth of the beams, (ii) inherent low ductility of the wide beams, generated by high amount of reinforcement, (iii) the big strut compressive forces developed inside the column-beam connections due to the low height of the beams, and (iv) the fact that the wide beams are wider than the columns, meaning that the contribution of the outer zones to the resistance of the beam-column joints is unreliable because there is no torsion reinforcement. In the orthogonal direction, the behavior is worse since the only members of the slabs that contribute to the lateral resistance are the joists and the façade beams. Moreover, these buildings were designed with codes that did not include ductility requirements and required only a low lateral resistance; indeed, in many cases, seismic action was not considered at all. Consequently, the seismic capacity of these structures is not reliable. The objective of this research is to assess numerically this capability, whereas further research will aim to propose retrofit strategies. The research approach consists of: (i) selecting a number of 3-story and 6-story buildings that represent the vast majority of the existing ones and (ii) evaluating their vulnerability through three types of analyses, namely: code-type, push-over and nonlinear dynamic analysis. Given the low lateral resistance of the main frames, the cooperation of the masonry infill walls is accounted for; for each representative building, three wall densities are considered. The results of the analyses show that the buildings in question exhibit inadequate seismic behavior in most of the examined situations. In general, the relative performance is less deficient for Target Drift CP (Collapse Prevention) than for IO (Immediate Occupancy). Since these buildings are selected to be representative of the vast majority of buildings with wide beams that were constructed in Spain without accounting for any seismic consideration, our conclusions can be extrapolated to a broader scenario.
Resumo:
This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.
Resumo:
The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.
Resumo:
Steel is, together with concrete, the most widely used material in civil engineering works. Not only its high strength, but also its ductility is of special interest, since it allows for more energy to be stored before failure. A better understanding of the material behaviour before failure may lead to better structural safety strategies.
Resumo:
Las probetas cilíndricas fabricadas con materiales metálicos de elevada ductilidad, como el aluminio o el cobre, sometidas a tracción suelen presentar una rotura comúnmente denominada rotura en copa y cono, debido a su geometría. Este tipo de rotura se reproduce numéricamente con éxito mediante el modelo de Gurson-Tvergaard- Needleman, cuya formulación matemática se basa en el fenómeno físico de nucleación, crecimiento y coalescencia de microhuecos. A diferencia de dichos materiales, las barras de acero perlítico, material con una ductilidad apreciable, presentan un frente de rotura plano que no puede simularse correctamente con los modelos antes mencionados, apareciendo una región interior de daño que, en principio, también puede atribuirse a un fenómeno de nucleación y crecimiento de microhuecos, mientras que en el exterior aparece una zona cuya micrografía permite asociar su rotura a un mecanismo de clivaje. En trabajos anteriores los autores han presentado un elemento de intercara cohesivo dependiente de la triaxialidad de tensiones que, incorporado a un código de elementos finitos, permite reproducir de forma razonable el daño que se desarrolla en la región interior mencionada. En este trabajo se presentan los resultados de una campaña experimental que permite validar el modelo desarrollado. Para ello, se ensayan probetas de diferentes diámetros y se comparan los resultados con los obtenidos numéricamente, empleando tres bases extensométricas diferentes en cada uno de los diámetros. Los resultados numéricos se ajustan razonablemente bien a los obtenidos experimentalmente.The cylindrical specimens made of high-ductility metallic materials, such as aluminium and copper, usually fail showing a fracture surface commonly known as cup-cone fracture because of its shape. This type of fracture is successfully reproduced using the Gurson-Tvergaard-Needleman model, which is based on the physical process of nucleation, growth and coalescence of microvoids. Unlike these materials, pearlitic steel bars, which are considerably ductile, show a flat fracture surface that cannot be correctly reproduced with the aforementioned models. In this flat fracture surface, a dark region can be observed in the centre of the specimen, which is the result of a process of nucleation and growth of microvoids, while in the rest of the fracture surface a different region can be identified, which a micrographic study reveals to be the result of a process of cleavage. In previous works, the authors presented a triaxiality-dependent cohesive interface element that, implemented in a finite element code, can reproduce in a reasonably accurate manner the damage that takes place in the dark region mentioned before. The results of an experimental campaign designed to validate the model are presented in this paper. For it, different diameter specimens are tested and these results are compared to those obtained with the numerical models, using three different initial lengths for the strain. Numerical results agree reasonably well with those obtained experimentally.
Resumo:
Due to a growing concern over global warming, the bituminous mixture industry is making a constant effort to diminish its emissions by reducing manufacturing and installation temperatures without compromising the mechanical properties of the bituminous mixtures. The use of mixtures with tyre rubber has demonstrated that these mixtures can be economical and ecological and that they improve the behaviour of the pavements. However, bituminous mixtures with a high rubber content present one major drawback: they require higher mixing and installation temperatures due to the elevated viscosity caused by the high rubber content and thus they produce larger amounts of greenhouse gas emissions than conventional bituminous mixtures. This article presents a study of the effect of four viscosity-reducing additives (Sasobit®, Asphaltan A®, Asphaltan B® and Licomont BS 100®) on a bitumen modified with 15% rubber. The results of this study indicate that these additives successfully reduce viscosity, increase the softening temperature and reduce penetration. However, they do not have a clear effect on the test for elastic recovery and ductility at 25 °C.
Resumo:
Las probetas cilíndricas fabricadas con materiales metálicos de elevada ductilidad, como el aluminio o el cobre, sometidas a tracción suelen presentar una rotura comúnmente denominada rotura en copa y cono, debido a su geometría. Este tipo de rotura se reproduce numéricamente con éxito mediante el modelo de Gurson-Tvergaard- Needleman, cuya formulación matemática se basa en el fenómeno físico de nucleación, crecimiento y coalescencia de microhuecos. A diferencia de dichos materiales, las barras de acero perlítico, material con una ductilidad apreciable, presentan un frente de rotura plano que no puede simularse correctamente con los modelos antes mencionados, apareciendo una región interior de daño que, en principio, también puede atribuirse a un fenómeno de nucleación y crecimiento de microhuecos, mientras que en el exterior aparece una zona cuya micrografía permite asociar su rotura a un mecanismo de clivaje. En trabajos anteriores los autores han presentado un elemento de intercara cohesivo dependiente de la triaxialidad de tensiones que, incorporado a un código de elementos finitos, permite reproducir de forma razonable el daño que se desarrolla en la región interior mencionada. En este trabajo se presentan los resultados de una campaña experimental que permite validar el modelo desarrollado. Para ello, se ensayan probetas de diferentes diámetros y se comparan los resultados con los obtenidos numéricamente, empleando tres bases extensométricas diferentes en cada uno de los diámetros. Los resultados numéricos se ajustan razonablemente bien a los obtenidos experimentalmente.The cylindrical specimens made of high-ductility metallic materials, such as aluminium and copper, usually fail showing a fracture surface commonly known as cup-cone fracture because of its shape. This type of fracture is successfully reproduced using the Gurson-Tvergaard-Needleman model, which is based on the physical process of nucleation, growth and coalescence of microvoids. Unlike these materials, pearlitic steel bars, which are considerably ductile, show a flat fracture surface that cannot be correctly reproduced with the aforementioned models. In this flat fracture surface, a dark region can be observed in the centre of the specimen, which is the result of a process of nucleation and growth of microvoids, while in the rest of the fracture surface a different region can be identified, which a micrographic study reveals to be the result of a process of cleavage. In previous works, the authors presented a triaxiality-dependent cohesive interface element that, implemented in a finite element code, can reproduce in a reasonably accurate manner the damage that takes place in the dark region mentioned before. The results of an experimental campaign designed to validate the model are presented in this paper. For it, different diameter specimens are tested and these results are compared to those obtained with the numerical models, using three different initial lengths for the strain. Numerical results agree reasonably well with those obtained experimentally.
Resumo:
Consideraciones sobre la ductilidad en zonas sísmicas. This paper analyses the ductile behavior of a highway overpass located in a seismic zone. The paper presents the results of a pushover analysis that enables the design engineer to estimate the behavior of the bridge’s columns in two directions in an independent manner. The differences with the theoretical bilinear behavior are described and explained. Indications are given on the need and possibilities of taking advantage of ductility in different seismic events scenarios.
Resumo:
Small punch (SP) test techniques are typically used to study the mechanical properties of materials or components from miniature size specimens. This kind of test was originally developed to assess ductility loss in steel caused by irradiation or thermal treatment, particularly when the amount of metal was limited, but it soon proved to be a powerful method to estimate several properties.
Resumo:
Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foil
Resumo:
The mechanical behavior and the deformation and failure micromechanisms of a thermally-bonded polypropylene nonwoven fabric were studied as a function of temperature and strain rate. Mechanical tests were carried out from 248 K (below the glass transition temperature) up to 383 K at strain rates in the range ≈10−3 s−1 to 10−1 s−1. In addition, individual fibers extracted from the nonwoven fabric were tested under the same conditions. Micromechanisms of deformation and failure at the fiber level were ascertained by means of mechanical tests within the scanning electron microscope while the strain distribution at the macroscopic level upon loading was determined by means of digital image correlation. It was found that the nonwoven behavior was mainly controlled by the properties of the fibers and of the interfiber bonds. Fiber properties determined the nonlinear behavior before the peak load while the interfiber bonds controlled the localization of damage after the peak load. The influence of these properties on the strength, ductility and energy absorbed during deformation is discussed from the experimental observations.
Resumo:
Los sismos afectan a las estructuras en función de su intensidad. Normalmente se espera de las estructuras daños irreparables por motivos de ductilidad en los sismos nominales o de diseño, para protección de las personas y sus bienes. No obstante, las estructuras en zonas sísmicas sufren terremotos de baja o media intensidad de manera continuada y éstos pueden afectar a la capacidad resistente residual de las mismas, es por eso que en el presente trabajo se plantea lo siguiente: a) Identificar cuál es la estrategia o nivel de protección, que consideran las diferentes Normativas y Reglamentos frente a sismos de baja o mediana intensidad, puesto que durante la vida útil de una estructura, esta puede verse afectada por sismos de intensidad baja o moderada, los cuales también provocan daños; es por ello que es de mucha importancia conocer y estudiar el aporte, estrategias y demás parámetros que consideran las Normas, esto mediante la técnica de revisión de documentación o Literatura. b) Identificar la manera con que un terremoto de baja o media intensidad afecta a la capacidad resistente de las estructuras, sus señales, sus síntomas de daño, etc. Esto a través de tres técnicas de Investigación : Revisión en Literatura, Tormenta de ideas con un grupo de expertos en el tema, y mediante la Técnica Delphi; para finalmente aplicar una método de refinamiento para elaborar un listado y un mapa de síntomas esperables en las estructuras, consecuencia de eventos sísmicos de baja o mediana intensidad. Los cuales se podrían controlar con sistemas inteligentes y así monitorizar las construcciones para prever su comportamiento futuro. Earthquakes affect structures depending on its intensity. Normally it expected of the irreparable damage structures. It due to ductility in nominal earthquakes to protect people and property. Structures in seismic areas suffer earthquakes of low to medium intensity continually, and it may affect the residual resistant ability, therefore posed in this investigation is the following: (a) Identifying what is the strategy or level of protection, which consider different guidelines and regulations against earthquakes of low to medium intensity. Since during the service life of a structure may be affected by low or moderate intensity earthquakes, which also cause damage. For this reason it is very important also to meet and study the contribution, strategies and other parameters considered by the Guidelines by reviewing the documentation or literature technique. b) Identifying the way an earthquake of low to medium intensity affects the resistant ability of structures, their signs, their symptoms of injury, etc. Through three research techniques: review of documentation or literature, brainstorming technique with a group of experts, and using the Delphi technique. Finally applying a method of refining to produce a list and a map of symptoms expected in structures, consequence of low to medium intensity earthquakes. It could be controlled with intelligent systems and thus to monitor structures to predict its future behavior
Resumo:
Current design practices recommend to comply with the capacity protection principle, which pays special attention to ensuring an elastic response of the foundations under ground motion events. However, in cases such as elevated reinforced concrete (RC) pile-cap foundation typologies, this design criterion may lead to conservative designs, with excessively high construction costs. Reinforced concrete elevated pile-cap foundations is a system formed by a group of partially embedded piles connected through an aboveground stayed cap and embedded in soil. In the cases when they are subjected to ground motions, the piles suffer large bending moments that make it difficult to maintain their behavior within the elastic range of deformations. Aiming to make an in-depth analysis of the nonlinear behavior of elevated pile-cap foundations, a cyclic loading test was performed on a concrete 2x3 pile configuration specimen of elevated pile-cap foundation. Two results of this test, the failure mechanism and the ductile behavior, were used for the calibration of a numerical model built in OpenSees framework, by using a pushover analysis. The calibration of the numerical model enabled an in-depth study of the seismic nonlinear response of this kind of foundations. A parametric analysis was carried for this purpose, aiming to study how sensitive RC elevated pile-cap foundations are, when subjected to variations in the diameter of piles, reinforcement ratios, external loads, soil density or multilayer configurations. This analysis provided a set of ductility factors that can be used as a reference for design practices and which correspond to each of the cases analyzed.