57 resultados para bandgap


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cadmium thioindate spinel CdIn2S4 semiconductor has potential applications for optoelectronic devices. We present a theoretical study of the structural and optoelectronic properties of the host and of the Cr-doped ternary spinel. For the host spinel, we analyze the direct or indirect character of the energy bandgap, the change of the energy bandgap with the anion displacement parameter and with the site cation distribution, and the optical properties. The main effect of the Cr doping is the creation of an intermediate band within the energy bandgap. The character and the occupation of this band are analyzed for two substitutions: Cr by In and Cr by Cd. This band permits more channels for the photon absorption. The optical properties are obtained and analyzed. The absorption coefficients are decomposed into contributions from the different absorption channels and from the inter-and intra-atomic components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of quantum dot, quantum wire, and quantum well InAs/GaAs solar cells is studied with a very simplified model based on experimental results in order to assess their performance as a function of the low bandgap material volume fraction fLOW. The efficiency of structured devices is found to exceed the efficiency of a non-structured GaAs cell, in particular under concentration, when fLOW is high; this condition is easier to achieve with quantum wells. If three different quasi Fermi levels appear with quantum dots the efficiency can be much higher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuando se usa fotocatálisis, tanto para procesos de descontaminación como para síntesis química específica y (especialmente) para aprovechamiento de energía solar, importa aprovechar un rango muy amplio de luz visible. Para ello se estudian hoy principalmente óxidos (con o sin adición de aniones que disminuyen el gap como el nitrógeno); los sulfuros, como el bien conocido CdS, tienen estabilidad limitada, sobre todo para procesos de fotooxidación en presencia de agua en los que sufren corrosión. Aquí se presentan estudios sobre sulfuros como el In2S3 y el SnS2 (con bandgaps respectivos de 2.0 y 2.2 eV [1]) cuyos metales tienen mayor valencia y coordinación octaédrica, y en los que por ambos factores cabe suponer que su red cristalina, más compacta, tendrá mayor estabilidad. Se muestra también que mediante un dopado importante con vanadio se puede extender su rango espectral de fotoactividad, lo que se atribuye a la formación de una banda intermedia que posibilita el uso de dos fotones con energía inferior al bandgap para conseguir una excitación completa en el semiconductor; este proceso ha sido propuesto últimamente para aumentar el rendimiento de las células fotovoltaicas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intermediate band solar cell (IBSC) is a solar cell that, in order to increase its efficiency over that of single gap solar cells, takes advantage of the absorption of below-bandgap energy photons by means of an intermediate band (IB) located in the semiconductor bandgap. For this process to improve the solar cell performance, the belowbandgap photon absorption has to be effective and the IB cannot limit the open-circuit voltage of the cell. In this paper we provide a guide to the new researcher interested in the idea in order he can quickly become familiar with the concept and updated with the most relevant experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Implementation of a high-efficiency quantum dot intermediate-band solar cell (QD-IBSC) must accompany a sufficient photocurrent generation via IB states. The demonstration of a QD-IBSC is presently undergoing two stages. The first is to develop a technology to fabricate high-density QD stacks or a superlattice of low defect density placed within the active region of a p-i-n SC, and the second is to realize half-filled IB states to maximize the photocurrent generation by two-step absorption of sub-bandgap photons. For this, we have investigated the effect of light concentration on the characteristics of QDSCs comprised of multi-layer stacks of self-organized InAs/GaNAs QDs grown with and without impurity doping in molecular beam epitaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IBPOWER is a Project awarded under the 7th European Framework Programme that aims to advance research on intermediate band solar cells (IBSCs). These are solar cells conceived to absorb below bandgap energy photons by means of an electronic energy band that is located within the semiconductor bandgap, whilst producing photocurrent with output voltage still limited by the total semiconductor bandgap. IBPOWER employs two basic strategies for implementing the IBSC concept. The first is based on the use of quantum dots, the IB arising from the confined energy levels of the electrons in the dots. Quantum dots have led to devices that demonstrate the physical operation principles of the IB concept and have allowed identification of the problems to be solved to achieve actual high efficiencies. The second approach is based on the creation of bulk intermediate band materials by the insertion of an appropriate impurity into a bulk semiconductor. Under this approach it is expected that, when inserted at high densities, these impurities will find it difficult to capture electrons by producing a breathing mode and will cease behaving as non-radiative recombination centres. Towards this end the following systems are being investigated: a) Mn: In1-xGax N; b) transition metals in GaAs and c) thin films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using photocatalysis for energy applications depends, more than for environmental purposes or selective chemical synthesis, on converting as much of the solar spectrum as possible; the best photocatalyst, titania, is far from this. Many efforts are pursued to use better that spectrum in photocatalysis, by doping titania or using other materials (mainly oxides, nitrides and sulphides) to obtain a lower bandgap, even if this means decreasing the chemical potential of the electron-hole pairs. Here we introduce an alternative scheme, using an idea recently proposed for photovoltaics: the intermediate band (IB) materials. It consists in introducing in the gap of a semiconductor an intermediate level which, acting like a stepstone, allows an electron jumping from the valence band to the conduction band in two steps, each one absorbing one sub-bandgap photon. For this the IB must be partially filled, to allow both sub-bandgap transitions to proceed at comparable rates; must be made of delocalized states to minimize nonradiative recombination; and should not communicate electronically with the outer world. For photovoltaic use the optimum efficiency so achievable, over 1.5 times that given by a normal semiconductor, is obtained with an overall bandgap around 2.0 eV (which would be near-optimal also for water phtosplitting). Note that this scheme differs from the doping principle usually considered in photocatalysis, which just tries to decrease the bandgap; its aim is to keep the full bandgap chemical potential but using also lower energy photons. In the past we have proposed several IB materials based on extensively doping known semiconductors with light transition metals, checking first of all with quantum calculations that the desired IB structure results. Subsequently we have synthesized in powder form two of them: the thiospinel In2S3 and the layered compound SnS2 (having bandgaps of 2.0 and 2.2 eV respectively) where the octahedral cation is substituted at a â?10% level with vanadium, and we have verified that this substitution introduces in the absorption spectrum the sub-bandgap features predicted by the calculations. With these materials we have verified, using a simple reaction (formic acid oxidation), that the photocatalytic spectral response is indeed extended to longer wavelengths, being able to use even 700 nm photons, without largely degrading the response for above-bandgap photons (i.e. strong recombination is not induced) [3b, 4]. These materials are thus promising for efficient photoevolution of hydrogen from water; work on this is being pursued, the results of which will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The achievement of higher frequencies (HF) and the reduction of energy consumption, to improve sensing, communication and computation, involve the continued scaling down to the nanometer level. This scaling is enabled by of innovative device designs, improved processing technologies and assessment tools, and new material structures. In this work, we have used all these factors to demonstrate state-of-the-art HF devices in two materials with quite different electronic properties: wide semiconductor bandgap III-nitrides for resonators and power amplifiers; and graphene, a zero bandgap material expected to revolutionize low noise and HF flexible electronics. Some issues faced during their development will be discussed during the talk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays one of the challenges of materials science is to find new technologies that will be able to make the most of renewable energies. An example of new proposals in this field are the intermediate-band (IB) materials, which promise higher efficiencies in photovoltaic applications (through the intermediate band solar cells), or in heterogeneous photocatalysis (using nanoparticles of them, for the light-induced degradation of pollutants or for the efficient photoevolution of hydrogen from water). An IB material consists in a semiconductor in which gap a new level is introduced [1], the intermediate band (IB), which should be partially filled by electrons and completely separated of the valence band (VB) and of the conduction band (CB). This scheme (figure 1) allows an electron from the VB to be promoted to the IB, and from the latter to the CB, upon absorption of photons with energy below the band gap Eg, so that energy can be absorbed in a wider range of the solar spectrum and a higher current can be obtained without sacrificing the photovoltage (or the chemical driving force) corresponding to the full bandgap Eg, thus increasing the overall efficiency. This concept, applied to photocatalysis, would allow using photons of a wider visible range while keeping the same redox capacity. It is important to note that this concept differs from the classic photocatalyst doping principle, which essentially tries just to decrease the bandgap. This new type of materials would keep the full bandgap potential but would use also lower energy photons. In our group several IB materials have been proposed, mainly for the photovoltaic application, based on extensively doping known semiconductors with transition metals [2], examining with DFT calculations their electronic structures. Here we refer to In2S3 and SnS2, which contain octahedral cations; when doped with Ti or V an IB is formed according to quantum calculations (see e.g. figure 2). We have used a solvotermal synthesis method to prepare in nanocrystalline form the In2S3 thiospinel and the layered compound SnS2 (which when undoped have bandgaps of 2.0 and 2.2 eV respectively) where the cation is substituted by vanadium at a ?10% level. This substitution has been studied, characterizing the materials by different physical and chemical techniques (TXRF, XRD, HR-TEM/EDS) (see e.g. figure 3) and verifying with UV spectrometry that this substitution introduces in the spectrum the sub-bandgap features predicted by the calculations (figure 4). For both sulphide type nanoparticles (doped and undoped) the photocatalytic activity was studied by following at room temperature the oxidation of formic acid in aqueous suspension, a simple reaction which is easily monitored by UV-Vis spectroscopy. The spectral response of the process is measured using a collection of band pass filters that allow only some wavelengths into the reaction system. Thanks to this method the spectral range in which the materials are active in the photodecomposition (which coincides with the band gap for the undoped samples) can be checked, proving that for the vanadium substituted samples this range is increased, making possible to cover all the visible light range. Furthermore it is checked that these new materials are more photocorrosion resistant than the toxic CdS witch is a well know compound frequently used in tests of visible light photocatalysis. These materials are thus promising not only for degradation of pollutants (or for photovoltaic cells) but also for efficient photoevolution of hydrogen from water; work in this direction is now being pursued.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade several prototypes of intermediate band solar cells (IBSCs) have been manufactured. So far, most of these prototypes have been based on InAs/GaAs quantum dots (QDs) in order to implement the IB material. The key operation principles of the IB theory are two photon sub-bandgap (SBG) photocurrent, and output voltage preservation, and both have been experimentally demonstrated at low temperature. At room temperature (RT), however, thermal escape/relaxation between the conduction band (CB) and the IB prevents voltage preservation. To improve this situation, we have produced and characterized the first reported InAs/AlGaAs QD-based IBSCs. For an Al content of 25% in the host material, we have measured an activation energy of 361 meV for the thermal carrier escape. This energy is about 250 meV higher than the energies found in the literature for InAs/GaAs QD, and almost 140 meV higher than the activation energy obtained in our previous InAs/GaAs QD-IBSC prototypes including a specifically designed QD capping layer. This high value is responsible for the suppression of the SBG quantum efficiency under monochromatic illumination at around 220 K. We suggest that, if the energy split between the CB and the IB is large enough, activation energies as high as to suppress thermal carrier escape at room temperature (RT) can be achieved. In this respect, the InAs/AlGaAs system offers new possibilities to overcome some of the problems encountered in InAs/GaAs and opens the path for QD-IBSC devices capable of achieving high efficiency at RT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno. Se muestra que el conocido fenómeno del escape térmico de los puntos cuánticos es de naturaleza fotónica; se debe a los fotones térmicos, que inducen transiciones entre los estados excitados que se encuentran escalonados en energía entre el estado intermedio fundamental y la banda de conducción. En el capítulo final, este modelo realista de equilibrio detallado se combina con el método de simulación de redes de difracción para predecir el efecto que tendría incorporar una red de difracción en una célula solar de banda intermedia y puntos cuánticos. Se ha de optimizar cuidadosamente el periodo de la red para equilibrar el aumento de las diferentes transiciones intermedias, que tienen lugar en serie. Debido a que la absorción en los puntos cuánticos es extremadamente débil, se deduce que el atrapamiento de la luz, por sí solo, no es suficiente para conseguir corrientes apreciables a partir de fotones con energía menor que la banda prohibida en las células con puntos cuánticos. Se requiere una combinación del atrapamiento de la luz con un incremento de la densidad de puntos cuánticos. En el límite radiativo y sin atrapamiento de la luz, se necesitaría que el número de puntos cuánticos de una célula solar se multiplicara por 1000 para superar la eficiencia de una célula de referencia con una sola banda prohibida. En cambio, una célula con red de difracción precisaría un incremento del número de puntos en un factor 10 a 100, dependiendo del nivel de la absorción parásita en el reflector posterior. Abstract The purpose of this thesis is to investigate the benefits that diffractive light trapping can offer to quantum dot intermediate band solar cells and crystalline silicon solar cells. Both solar cell technologies suffer from incomplete photon absorption in some part of the solar spectrum. Quantum dot intermediate band solar cells are theoretically capable of achieving much higher efficiencies than conventional single-gap devices. Present prototypes suffer from extremely weak absorption of subbandgap photons in the quantum dots. This problem has received little attention so far, yet it is a serious barrier to the technology approaching its theoretical efficiency limit. Crystalline silicon solar cells absorb weakly in the near infrared due to their indirect bandgap. This problem has received much attention over recent decades, and all commercial crystalline silicon solar cells employ some form of light trapping. With the industry moving toward thinner and thinner wafers, light trapping is becoming of greater importance and diffractive structures may offer an improvement over the state-of-the-art. We begin by constructing a computational method with which to simulate solar cells equipped with diffraction grating textures. The method employs a wave-optical treatment of the diffraction grating, via rigorous coupled wave analysis, with a geometric-optical treatment of the thick solar cell bulk. These are combined using a steady-state matrix formalism. The method has been implemented computationally, and is found to be efficient and to give results in good agreement with alternative methods from other authors. The theoretical upper limit to absorption enhancement in solar cells using diffractions gratings is calculated using the matrix formalism derived in the previous task. This limit is compared to the so-called Lambertian limit for light trapping with isotropic scatterers, and to the absolute upper limit to light trapping in bulk absorbers. It is found that bi-periodic gratings (square or hexagonal geometry) are capable of offering much better light trapping than uni-periodic line gratings. The upper limit depends strongly on the grating period. For large periods, diffraction gratings are theoretically able to offer light trapping at the absolute upper limit, but only if the scattering efficiencies have a particular form, which is deemed to be beyond present design capabilities. For periods similar to the incident wavelength, diffraction gratings can offer light trapping below the absolute limit but above the Lambertian limit without placing unrealistic demands on the exact form of the scattering efficiencies. This is possible for a reasonably broad wavelength range. The computational method is used to design and optimise diffraction gratings for light trapping in solar cells. The proposed diffraction grating consists of a hexagonal lattice of cylindrical wells etched into the rear of the bulk solar cell absorber. This is encapsulated in a dielectric buffer layer, and capped with a rear reflector. Simulations are made of this grating profile applied to a crystalline silicon solar cell and to a quantum dot intermediate band solar cell. The grating period, well depth, and lateral well dimensions are optimised numerically for both solar cell types. This yields the optimum parameters to be used in fabrication of grating equipped solar cells. The optimum parameters are explained using simple physical concepts, allowing us to make more general statements that can be applied to other solar cell technologies. Diffraction grating textures are fabricated on crystalline silicon substrates using nano-imprint lithography and reactive ion etching. The optimum grating period from the previous task has been used as a design parameter. The substrates have been processed into solar cell precursors for optical measurements. Reflection spectroscopy measurements confirm that bi-periodic square gratings offer better absorption enhancement than uni-periodic line gratings. The fabricated structures have been simulated with the previously developed computation tool, with good agreement between measurement and simulation results. The simulations reveal that a significant amount of the incident photons are absorbed parasitically in the rear reflector, and that this is exacerbated by the non-planarity of the rear reflector. An alternative method of depositing the dielectric buffer layer was developed, which leaves a planar surface onto which the reflector is deposited. It was found that samples prepared in this way suffered less from parasitic reflector absorption. The next task described in the thesis is the study of photon absorption in semiconductor quantum dots. The bound-state energy levels of in InAs/GaAs quantum dots is calculated using the effective mass approximation. A one- and four- band method is applied to the calculation of electron and hole wavefunctions respectively, with an empirical Hamiltonian being employed in the latter case. The strength of optical transitions between the bound states is calculated using the Fermi golden rule. The effect of the quantum dot dimensions on the energy levels and transition strengths is investigated. It is found that a strong direct transition between the ground intermediate state and the conduction band can be promoted by decreasing the quantum dot width from its value in present prototypes. This has the added benefit of reducing the ladder of excited states between the ground state and the conduction band, which may help to reduce thermal escape of electrons from quantum dots: an undesirable phenomenon from the point of view of the open circuit voltage of an intermediate band solar cell. A realistic detailed balance model is developed for quantum dot solar cells, which uses as input the energy levels and transition strengths calculated in the previous task. The model calculates the transition currents between the many intermediate levels and the valence and conduction bands under a given set of conditions. It is distinct from previous idealised detailed balance models, which are used to calculate limiting efficiencies, since it makes realistic assumptions about photon absorption by each transition. The model is used to reproduce published experimental quantum efficiency results at different temperatures, with quite good agreement. The much-studied phenomenon of thermal escape from quantum dots is found to be photonic; it is due to thermal photons, which induce transitions between the ladder of excited states between the ground intermediate state and the conduction band. In the final chapter, the realistic detailed balance model is combined with the diffraction grating simulation method to predict the effect of incorporating a diffraction grating into a quantum dot intermediate band solar cell. Careful optimisation of the grating period is made to balance the enhancement given to the different intermediate transitions, which occur in series. Due to the extremely weak absorption in the quantum dots, it is found that light trapping alone is not sufficient to achieve high subbandgap currents in quantum dot solar cells. Instead, a combination of light trapping and increased quantum dot density is required. Within the radiative limit, a quantum dot solar cell with no light trapping requires a 1000 fold increase in the number of quantum dots to supersede the efficiency of a single-gap reference cell. A quantum dot solar cell equipped with a diffraction grating requires between a 10 and 100 fold increase in the number of quantum dots, depending on the level of parasitic absorption in the rear reflector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quaternary nitride-based high electron mobility transistor (HEMT) has been recently a focus of interest because of the possibility to grow lattice-matched barrier to GaN and tune the barrier bandgap at the same time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers sub-bandgap photon absorption in an InAs/GaAs quantum dot matrix. Absorption coefficients are calculated for transitions from the extended states in the valence band to confined states in the conduction band. This completes a previous body of work in which transitions between bound states were calculated. The calculations are based on the empirical k·p Hamiltonian considering the quantum dots as parallelepipeds. The extended states may be only partially extended?in one or two dimensions?or extended in all three dimensions. It is found that extended-to-bound transitions are, in general, weaker than bound-to-bound transitions, and that the former are weaker when the initial state is extended in more coordinates. This study is of direct application to the research of intermediate band solar cells and other semiconductor devices based on light absorption in semiconductors nanostructured with quantum dots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD-IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi-level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD-IBSC and its temperature dependence. This allows the analysis of individual sub-bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD-IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD-IBSC proposals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For solar cells dominated by radiative recombination, the performance can be significantly enhanced by improving the internal optics. Internally radiated photons can be directly emitted from the cell, but if confined by good internal reflectors at the front and back of the cell they can also be re-absorbed with a significant probability. This so-called photon recycling leads to an increase in the equilibrium minority carrier concentration and therefore the open-circuit voltage, Voc. In multijunction cells, the internal luminescence from a particular junction can also be coupled into a lower bandgap junction where it generates photocurrent in addition to the externally generated photocurrent, and affects the overall performance of the tandem. We demonstrate and discuss the implications of a detailed model that we have developed for real, non-idealized solar cells that calculates the external luminescent efficiency, accounting for wavelength-dependent optical properties in each layer, parasitic optical and electrical losses, multiple reflections within the cell and isotropic internal emission. The calculation leads to Voc, and we show data on high quality GaAs cells that agree with the trends in the model as the optics are systematically varied. For multijunction cells the calculation also leads to the luminescent coupling efficiency, and we show data on GaInP/GaAs tandems where the trends also agree as the coupling is systematically varied. In both cases, the effects of the optics are most prominent in cells with good material quality. The model is applicable to any solar cell for which the optical properties of each layer are well-characterized, and can be used to explore a wide phase space of design for single junction and multijunction solar cells.