37 resultados para Stochastic simulation algorithm
Resumo:
In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target regions, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. Our proposition reduces, or even eliminates, infrastructure cost and human efforts during the construction of realistic 3D scenes used in radio propagation modeling. In addition, the results obtained from our propagation model proves to be both accurate and efficient
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
In this paper, we propose the distributed bees algorithm (DBA) for task allocation in a swarm of robots. In the proposed scenario, task allocation consists in assigning the robots to the found targets in a 2-D arena. The expected distribution is obtained from the targets' qualities that are represented as scalar values. Decision-making mechanism is distributed and robots autonomously choose their assignments taking into account targets' qualities and distances. We tested the scalability of the proposed DBA algorithm in terms of number of robots and number of targets. For that, the experiments were performed in the simulator for various sets of parameters, including number of robots, number of targets, and targets' utilities. Control parameters inherent to DBA were tuned to test how they affect the final robot distribution. The simulation results show that by increasing the robot swarm size, the distribution error decreased.
Resumo:
Esta tesis realiza una contribución metodológica al problema de la gestión óptima de embalses hidroeléctricos durante eventos de avenidas, considerando un enfoque estocástico y multiobjetivo. Para ello se propone una metodología de evaluación de estrategias de laminación en un contexto probabilístico y multiobjetivo. Además se desarrolla un entorno dinámico de laminación en tiempo real con pronósticos que combina un modelo de optimización y algoritmos de simulación. Estas herramientas asisten a los gestores de las presas en la toma de decisión respecto de cuál es la operación más adecuada del embalse. Luego de una detallada revisión de la bibliografía, se observó que los trabajos en el ámbito de la gestión óptima de embalses en avenidas utilizan, en general, un número reducido de series de caudales o hidrogramas para caracterizar los posibles escenarios. Limitando el funcionamiento satisfactorio de un modelo determinado a situaciones hidrológicas similares. Por otra parte, la mayoría de estudios disponibles en este ámbito abordan el problema de la laminación en embalses multipropósito durante la temporada de avenidas, con varios meses de duración. Estas características difieren de la realidad de la gestión de embalses en España. Con los avances computacionales en materia de gestión de información en tiempo real, se observó una tendencia a la implementación de herramientas de operación en tiempo real con pronósticos para determinar la operación a corto plazo (involucrando el control de avenidas). La metodología de evaluación de estrategias propuesta en esta tesis se basa en determinar el comportamiento de éstas frente a un espectro de avenidas características de la solicitación hidrológica. Con ese fin, se combina un sistema de evaluación mediante indicadores y un entorno de generación estocástica de avenidas, obteniéndose un sistema implícitamente estocástico. El sistema de evaluación consta de tres etapas: caracterización, síntesis y comparación, a fin de poder manejar la compleja estructura de datos resultante y realizar la evaluación. En la primera etapa se definen variables de caracterización, vinculadas a los aspectos que se quieren evaluar (seguridad de la presa, control de inundaciones, generación de energía, etc.). Estas variables caracterizan el comportamiento del modelo para un aspecto y evento determinado. En la segunda etapa, la información de estas variables se sintetiza en un conjunto de indicadores, lo más reducido posible. Finalmente, la comparación se lleva a cabo a partir de la comparación de esos indicadores, bien sea mediante la agregación de dichos objetivos en un indicador único, o bien mediante la aplicación del criterio de dominancia de Pareto obteniéndose un conjunto de soluciones aptas. Esta metodología se aplicó para calibrar los parámetros de un modelo de optimización de embalse en laminación y su comparación con otra regla de operación, mediante el enfoque por agregación. Luego se amplió la metodología para evaluar y comparar reglas de operación existentes para el control de avenidas en embalses hidroeléctricos, utilizando el criterio de dominancia. La versatilidad de la metodología permite otras aplicaciones, tales como la determinación de niveles o volúmenes de seguridad, o la selección de las dimensiones del aliviadero entre varias alternativas. Por su parte, el entorno dinámico de laminación al presentar un enfoque combinado de optimización-simulación, permite aprovechar las ventajas de ambos tipos de modelos, facilitando la interacción con los operadores de las presas. Se mejoran los resultados respecto de los obtenidos con una regla de operación reactiva, aun cuando los pronósticos se desvían considerablemente del hidrograma real. Esto contribuye a reducir la tan mencionada brecha entre el desarrollo teórico y la aplicación práctica asociada a los modelos de gestión óptima de embalses. This thesis presents a methodological contribution to address the problem about how to operate a hydropower reservoir during floods in order to achieve an optimal management considering a multiobjective and stochastic approach. A methodology is proposed to assess the flood control strategies in a multiobjective and probabilistic framework. Additionally, a dynamic flood control environ was developed for real-time operation, including forecasts. This dynamic platform combines simulation and optimization models. These tools may assist to dam managers in the decision making process, regarding the most appropriate reservoir operation to be implemented. After a detailed review of the bibliography, it was observed that most of the existing studies in the sphere of flood control reservoir operation consider a reduce number of hydrographs to characterize the reservoir inflows. Consequently, the adequate functioning of a certain strategy may be limited to similar hydrologic scenarios. In the other hand, most of the works in this context tackle the problem of multipurpose flood control operation considering the entire flood season, lasting some months. These considerations differ from the real necessity in the Spanish context. The implementation of real-time reservoir operation is gaining popularity due to computational advances and improvements in real-time data management. The methodology proposed in this thesis for assessing the strategies is based on determining their behavior for a wide range of floods, which are representative of the hydrological forcing of the dam. An evaluation algorithm is combined with a stochastic flood generation system to obtain an implicit stochastic analysis framework. The evaluation system consists in three stages: characterizing, synthesizing and comparing, in order to handle the complex structure of results and, finally, conduct the evaluation process. In the first stage some characterization variables are defined. These variables should be related to the different aspects to be evaluated (such as dam safety, flood protection, hydropower, etc.). Each of these variables characterizes the behavior of a certain operating strategy for a given aspect and event. In the second stage this information is synthesized obtaining a reduced group of indicators or objective functions. Finally, the indicators are compared by means of an aggregated approach or by a dominance criterion approach. In the first case, a single optimum solution may be achieved. However in the second case, a set of good solutions is obtained. This methodology was applied for calibrating the parameters of a flood control model and to compare it with other operating policy, using an aggregated method. After that, the methodology was extent to assess and compared some existing hydropower reservoir flood control operation, considering the Pareto approach. The versatility of the method allows many other applications, such as determining the safety levels, defining the spillways characteristics, among others. The dynamic framework for flood control combines optimization and simulation models, exploiting the advantages of both techniques. This facilitates the interaction between dam operators and the model. Improvements are obtained applying this system when compared with a reactive operating policy, even if the forecasts deviate significantly from the observed hydrograph. This approach contributes to reduce the gap between the theoretical development in the field of reservoir management and its practical applications.
Resumo:
n this work, a mathematical unifying framework for designing new fault detection schemes in nonlinear stochastic continuous-time dynamical systems is developed. These schemes are based on a stochastic process, called the residual, which reflects the system behavior and whose changes are to be detected. A quickest detection scheme for the residual is proposed, which is based on the computed likelihood ratios for time-varying statistical changes in the Ornstein–Uhlenbeck process. Several expressions are provided, depending on a priori knowledge of the fault, which can be employed in a proposed CUSUM-type approximated scheme. This general setting gathers different existing fault detection schemes within a unifying framework, and allows for the definition of new ones. A comparative simulation example illustrates the behavior of the proposed schemes.
Resumo:
The purpose of this paper is to present a program written in Matlab-Octave for the simulation of the time evolution of student curricula, i.e, how students pass their subjects along time until graduation. The program computes, from the simulations, the academic performance rates for the subjects of the study plan for each semester as well as the overall rates, which are a) the efficiency rate defined as the ratio of the number of students passing the exam to the number of students who registered for it and b) the success rate, defined as the ratio of the number of students passing the exam to the number of students who not only registered for it but also actually took it. Additionally, we compute the rates for the bachelor academic degree which are established for Spain by the National Quality Evaluation and Accreditation Agency (ANECA) and which are the graduation rate (measured as the percentage of students who finish as scheduled in the plan or taking an extra year) and the efficiency rate (measured as the percentage of credits which a student who graduated has really taken). The simulation is done in terms of the probabilities of passing all the subjects in their study plan. The application of the simulator to Polytech students in Madrid, where requirements for passing are specially stiff in first and second year subjects, is particularly relevant to analyze student cohorts and the probabilities of students finishing in the minimum of four years, or taking and extra year or two extra years, and so forth. It is a very useful tool when designing new study plans. The calculation of the probability distribution of the random variable "number of semesters a student has taken to complete the curricula and graduate" is difficult or even unfeasible to obtain analytically, and this is even truer when we incorporate uncertainty in parameter estimation. This is why we apply Monte Carlo simulation which not only provides illustration of the stochastic process but also a method for computation. The stochastic simulator is proving to be a useful tool for identification of the subjects most critical in the distribution of the number of semesters for curriculum vitae (CV) completion and subsequently for a decision making process in terms of CV planning and passing standards in the University. Simulations are performed through a graphical interface where also the results are presented in appropriate figures. The Project has been funded by the Call for Innovation in Education Projects of Universidad Politécnica de Madrid (UPM) through a Project of its school Escuela Técnica Superior de Ingenieros Industriales ETSII during the period September 2010-September 2011.
Resumo:
In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.
Resumo:
In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target region, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. By comparing with other methods, the work presented in this paper makes contributions on reducing human efforts and cost in constructing 3D scene; moreover, the developed propagation model proves its potential in both accuracy and efficiency.
Resumo:
HELLO protocol or neighborhood discovery is essential in wireless ad hoc networks. It makes the rules for nodes to claim their existence/aliveness. In the presence of node mobility, no fix optimal HELLO frequency and optimal transmission range exist to maintain accurate neighborhood tables while reducing the energy consumption and bandwidth occupation. Thus a Turnover based Frequency and transmission Power Adaptation algorithm (TFPA) is presented in this paper. The method enables nodes in mobile networks to dynamically adjust both their HELLO frequency and transmission range depending on the relative speed. In TFPA, each node monitors its neighborhood table to count new neighbors and calculate the turnover ratio. The relationship between relative speed and turnover ratio is formulated and optimal transmission range is derived according to battery consumption model to minimize the overall transmission energy. By taking advantage of the theoretical analysis, the HELLO frequency is adapted dynamically in conjunction with the transmission range to maintain accurate neighborhood table and to allow important energy savings. The algorithm is simulated and compared to other state-of-the-art algorithms. The experimental results demonstrate that the TFPA algorithm obtains high neighborhood accuracy with low HELLO frequency (at least 11% average reduction) and with the lowest energy consumption. Besides, the TFPA algorithm does not require any additional GPS-like device to estimate the relative speed for each node, hence the hardware cost is reduced.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
Subtraction of Ictal SPECT Co-registered to MRI (SISCOM) is an imaging technique used to localize the epileptogenic focus in patients with intractable partial epilepsy. The aim of this study was to determine the accuracy of registration algorithms involved in SISCOM analysis using FocusDET, a new user-friendly application. To this end, Monte Carlo simulation was employed to generate realistic SPECT studies. Simulated sinograms were reconstructed by using the Filtered BackProjection (FBP) algorithm and an Ordered Subsets Expectation Maximization (OSEM) reconstruction method that included compensation for all degradations. Registration errors in SPECT-SPECT and SPECT-MRI registration were evaluated by comparing the theoretical and actual transforms. Patient studies with well-localized epilepsy were also included in the registration assessment. Global registration errors including SPECT-SPECT and SPECT-MRI registration errors were less than 1.2 mm on average, exceeding the voxel size (3.32 mm) of SPECT studies in no case. Although images reconstructed using OSEM led to lower registration errors than images reconstructed with FBP, differences after using OSEM or FBP in reconstruction were less than 0.2 mm on average. This indicates that correction for degradations does not play a major role in the SISCOM process, thereby facilitating the application of the methodology in centers where OSEM is not implemented with correction of all degradations. These findings together with those obtained by clinicians from patients via MRI, interictal and ictal SPECT and video-EEG, show that FocusDET is a robust application for performing SISCOM analysis in clinical practice.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
At present, all methods in Evolutionary Computation are bioinspired by the fundamental principles of neo-Darwinism, as well as by a vertical gene transfer. Virus transduction is one of the key mechanisms of horizontal gene propagation in microorganisms (e.g. bacteria). In the present paper, we model and simulate a transduction operator, exploring the possible role and usefulness of transduction in a genetic algorithm. The genetic algorithm including transduction has been named PETRI (abbreviation of Promoting Evolution Through Reiterated Infection). Our results showed how PETRI approaches higher fitness values as transduction probability comes close to 100%. The conclusion is that transduction improves the performance of a genetic algorithm, assuming a population divided among several sub-populations or ?bacterial colonies?.
Resumo:
The primary hypothesis stated by this paper is that the use of social choice theory in Ambient Intelligence systems can improve significantly users satisfaction when accessing shared resources. A research methodology based on agent based social simulations is employed to support this hypothesis and to evaluate these benefits. The result is a six-fold contribution summarized as follows. Firstly, several considerable differences between this application case and the most prominent social choice application, political elections, have been found and described. Secondly, given these differences, a number of metrics to evaluate different voting systems in this scope have been proposed and formalized. Thirdly, given the presented application and the metrics proposed, the performance of a number of well known electoral systems is compared. Fourthly, as a result of the performance study, a novel voting algorithm capable of obtaining the best balance between the metrics reviewed is introduced. Fifthly, to improve the social welfare in the experiments, the voting methods are combined with cluster analysis techniques. Finally, the article is complemented by a free and open-source tool, VoteSim, which ensures not only the reproducibility of the experimental results presented, but also allows the interested reader to adapt the case study presented to different environments.
Resumo:
Markov Chain Monte Carlo methods are widely used in signal processing and communications for statistical inference and stochastic optimization. In this work, we introduce an efficient adaptive Metropolis-Hastings algorithm to draw samples from generic multimodal and multidimensional target distributions. The proposal density is a mixture of Gaussian densities with all parameters (weights, mean vectors and covariance matrices) updated using all the previously generated samples applying simple recursive rules. Numerical results for the one and two-dimensional cases are provided.