81 resultados para Semantic Web Internet
Resumo:
In the paper we report on the results of our experiments on the construction of the opinion ontology. Our aim is to show the benefits of publishing in the open, on the Web, the results of the opinion mining process in a structured form. On the road to achieving this, we attempt to answer the research question to what extent opinion information can be formalized in a unified way. Furthermore, as part of the evaluation, we experiment with the usage of Semantic Web technologies and show particular use cases that support our claims.
Resumo:
Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic.
Resumo:
The Web has witnessed an enormous growth in the amount of semantic information published in recent years. This growth has been stimulated to a large extent by the emergence of Linked Data. Although this brings us a big step closer to the vision of a Semantic Web, it also raises new issues such as the need for dealing with information expressed in different natural languages. Indeed, although the Web of Data can contain any kind of information in any language, it still lacks explicit mechanisms to automatically reconcile such information when it is expressed in different languages. This leads to situations in which data expressed in a certain language is not easily accessible to speakers of other languages. The Web of Data shows the potential for being extended to a truly multilingual web as vocabularies and data can be published in a language-independent fashion, while associated language-dependent (linguistic) information supporting the access across languages can be stored separately. In this sense, the multilingual Web of Data can be realized in our view as a layer of services and resources on top of the existing Linked Data infrastructure adding i) linguistic information for data and vocabularies in different languages, ii) mappings between data with labels in different languages, and iii) services to dynamically access and traverse Linked Data across different languages. In this article we present this vision of a multilingual Web of Data. We discuss challenges that need to be addressed to make this vision come true and discuss the role that techniques such as ontology localization, ontology mapping, and cross-lingual ontology-based information access and presentation will play in achieving this. Further, we propose an initial architecture and describe a roadmap that can provide a basis for the implementation of this vision.
Resumo:
The Semantic Web is growing at a fast pace, recently boosted by the creation of the Linked Data initiative and principles. Methods, standards, techniques and the state of technology are becoming more mature and therefore are easing the task of publication and consumption of semantic information on the Web.
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
In this paper the authors present an approach for the semantic annotation of RESTful services in the geospatial domain. Their approach automates some stages of the annotation process, by using a combination of resources and services: a cross-domain knowledge base like DBpedia, two domain ontologies like GeoNames and the WGS84 vocabulary, and suggestion and synonym services. The authors’ approach has been successfully evaluated with a set of geospatial RESTful services obtained from ProgrammableWeb.com, where geospatial services account for a third of the total amount of services available in this registry.
Resumo:
Folksonomies emerge as the result of the free tagging activity of a large number of users over a variety of resources. They can be considered as valuable sources from which it is possible to obtain emerging vocabularies that can be leveraged in knowledge extraction tasks. However, when it comes to understanding the meaning of tags in folksonomies, several problems mainly related to the appearance of synonymous and ambiguous tags arise, specifically in the context of multilinguality. The authors aim to turn folksonomies into knowledge structures where tag meanings are identified, and relations between them are asserted. For such purpose, they use DBpedia as a general knowledge base from which they leverage its multilingual capabilities.
Resumo:
This paper describes the main goals and outcomes of the EU-funded Framework 7 project entitled Semantic Evaluation at Large Scale (SEALS). The growth and success of the Semantic Web is built upon a wide range of Semantic technologies from ontology engineering tools through to semantic web service discovery and semantic search. The evaluation of such technologies ? and, indeed, assessments of their mutual compatibility ? is critical for their sustained improvement and adoption. The SEALS project is creating an open and sustainable platform on which all aspects of an evaluation can be hosted and executed and has been designed to accommodate most technology types. It is envisaged that the platform will become the de facto repository of test datasets and will allow anyone to organise, execute and store the results of technology evaluations free of charge and without corporate bias. The demonstration will show how individual tools can be prepared for evaluation, uploaded to the platform, evaluated according to some criteria and the subsequent results viewed. In addition, the demonstration will show the flexibility and power of the SEALS Platform for evaluation organisers by highlighting some of the key technologies used.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies bringing their semantic to the data being published. These ontologies should be evaluated at different stages, both during their development and their publication. As important as correctly modelling the intended part of the world to be captured in an ontology, is publishing, sharing and facilitating the (re)use of the obtained model. In this paper, 11 evaluation characteristics, with respect to publish, share and facilitate the reuse, are proposed. In particular, 6 good practices and 5 pitfalls are presented, together with their associated detection methods. In addition, a grid-based rating system is generated. Both contributions, the set of evaluation characteristics and the grid system, could be useful for ontologists in order to reuse existing LD vocabularies or to check the one being built.
Resumo:
There are several different standardised and widespread formats to represent emotions. However, there is no standard semantic model yet. This paper presents a new ontology, called Onyx, that aims to become such a standard while adding concepts from the latest Semantic Web models. In particular, the ontology focuses on the representation of Emotion Analysis results. But the model is abstract and inherits from previous standards and formats. It can thus be used as a reference representation of emotions in any future application or ontology. To prove this, we have translated resources from EmotionML representation to Onyx. We also present several ways in which developers could benefit from using this ontology instead of an ad-hoc presentation. Our ultimate goal is to foster the use of semantic technologies for emotion Analysis while following the Linked Data ideals.
Resumo:
Los servicios en red que conocemos actualmente están basados en documentos y enlaces de hipertexto que los relacionan entre sí sin aportar verdadera información acerca de los contenidos que representan. Podría decirse que se trata de “una red diseñada por personas para ser interpretada por personas”. El objetivo principal de los últimos años es encaminar esta red hacia una web de conocimiento, en la que la información pueda ser interpretada por agentes computerizados de manera automática. Para llevar a cabo esta transformación es necesaria la utilización de nuevas tecnologías especialmente diseñadas para la descripción de contenidos como son las ontologías. Si bien las redes convencionales están evolucionando, no son las únicas que lo están haciendo. El rápido crecimiento de las redes de sensores y el importante aumento en el número de dispositivos conectados a internet, hace necesaria la incorporación de tecnologías de la web semántica a este tipo de redes. Para la realización de este Proyecto de Fin de Carrera se utilizará la ontología SSN, diseñada para la descripción semántica de sensores y las redes de las que forman parte con el fin de permitir una mejor interacción entre los dispositivos y los sistemas que hacen uso de ellos. El trabajo desarrollado a lo largo de este Proyecto de Fin de Carrera gira en torno a esta ontología, siendo el principal objetivo la generación semiautomática de código a partir de un modelo de sistemas descrito en función de las clases y propiedades proporcionadas por SSN. Para alcanzar este fin se dividirá el proyecto en varias partes. Primero se realizará un análisis de la ontología mencionada. A continuación se describirá un sistema simulado de sensores y por último se implementarán las aplicaciones para la generación automática de interfaces y la representación gráfica de los dispositivos del sistema a partir de la representación del éste en un fichero de tipo OWL. ABSTRACT. The web we know today is based on documents and hypertext links that relate these documents with each another, without providing consistent information about the contents they represent. It could be said that its a network designed by people to be used by people. The main goal of the last couple of years is to guide this network into a web of knowledge, where information can be automatically processed by machines. This transformation, requires the use of new technologies specially designed for content description such as ontologies. Nowadays, conventional networks are not the only type of networks evolving. The use of sensor networks and the number of sensor devices connected to the Internet is rapidly increasing, making the use the integration of semantic web technologies to this kind of networks completely necessary. The SSN ontology will be used for the development of this Final Degree Dissertation. This ontology was design to semantically describe sensors and the networks theyre part of, allowing a better interaction between devices and the systems that use them. The development carried through this Final Degree Dissertation revolves around this ontology and aims to achieve semiautomatic code generation starting from a system model described based on classes and properties provided by SSN. To reach this goal, de Dissertation will be divided in several parts. First, an analysis about the mentioned ontology will be made. Following this, a simulated sensor system will be described, and finally, the implementation of the applications will take place. One of these applications will automatically generate de interfaces and the other one will graphically represents the devices in the sensor system, making use of the system representation in an OWL file.
Resumo:
Language resources, such as multilingual lexica and multilingual electronic dictionaries, contain collections of lexical entries in several languages. Having access to the corresponding explicit or implicit translation relations between such entries might be of great interest for many NLP-based applications. By using Semantic Web-based techniques, translations can be available on the Web to be consumed by other (semantic enabled) resources in a direct manner, not relying on application-specific formats. To that end, in this paper we propose a model for representing translations as linked data, as an extension of the lemon model. Our translation module represents some core information associated to term translations and does not commit to specific views or translation theories. As a proof of concept, we have extracted the translations of the terms contained in Terminesp, a multilingual terminological database, and represented them as linked data. We have made them accessible on the Web both for humans (via a Web interface) and software agents (with a SPARQL endpoint).
Resumo:
En los últimos años la evolución de la información compartida por internet ha cambiado enormemente, llegando a convertirse en lo que llamamos hoy la Web Semántica. Este término, acuñado en 2004, muestra una manera más “inteligente” de compartir los datos, de tal manera que éstos puedan ser entendibles por una máquina o por cualquier persona en el mundo. Ahora mismo se encuentra en fase de expansión, prueba de ello es la cantidad de grupos de investigación que están actualmente dedicando sus esfuerzos al desarrollo e implementación de la misma y la amplitud de temáticas que tienen sus trabajos. Con la aparición de la Web Semántica, la tendencia de las bases de datos de nueva creación se está empezando a inclinar hacia la creación de ontologías más o menos sencillas que describan las bases de datos y así beneficiarse de las posibilidades de interoperabilidad que aporta. Con el presente trabajo se pretende el estudio de los beneficios que aporta la implementación de una ontología en una base de datos relacional ya creada, los trabajos necesarios para ello y las herramientas necesarias para hacerlo. Para ello se han tomado unos datos de gran interés y, como continuación a su trabajo, se ha implementado la ontología. Estos datos provienen del estudio de un método para la obtención automatizada del linaje de las parcelas registradas en el catastro español. Abstract: In the last years the evolution of the information shared on the Internet has dramatically changed, emerging what is called Semantic Web. This term appeared in 2004, defining a “smarter” way of sharing data. Data that could be understood by machines or by any human around the world. Nowadays, the Semantic Web is in expansion phase, as it can be probed by the amount of research groups working on this approach and the wide thematic range of their work. With the appearance of the Semantic Web, current database technologies are supported by the creation of ontologies which describe them and therefore get a new set of interoperability possibilities from them. This work focuses in the study of the benefits given by the implementation of an ontology in a created relational database, the steps to follow and the tools necessary to get it done. The study has been done by using data of considerable interest, coming from a study of the lineage of parcels registered in the Spanish cadaster. As a continuation of this work an ontology has been implemented.
Resumo:
En esta tesis se estudia la representación, modelado y comparación de colecciones mediante el uso de ontologías en el ámbito de la Web Semántica. Las colecciones, entendidas como agrupaciones de objetos o elementos con entidad propia, son construcciones que aparecen frecuentemente en prácticamente todos los dominios del mundo real, y por tanto, es imprescindible disponer de conceptualizaciones de estas estructuras abstractas y de representaciones de estas conceptualizaciones en los sistemas informáticos, que definan adecuadamente su semántica. Mientras que en muchos ámbitos de la Informática y la Inteligencia Artificial, como por ejemplo la programación, las bases de datos o la recuperación de información, las colecciones han sido ampliamente estudiadas y se han desarrollado representaciones que responden a multitud de conceptualizaciones, en el ámbito de la Web Semántica, sin embargo, su estudio ha sido bastante limitado. De hecho hasta la fecha existen pocas propuestas de representación de colecciones mediante ontologías, y las que hay sólo cubren algunos tipos de colecciones y presentan importantes limitaciones. Esto impide la representación adecuada de colecciones y dificulta otras tareas comunes como la comparación de colecciones, algo crítico en operaciones habituales como las búsquedas semánticas o el enlazado de datos en la Web Semántica. Para solventar este problema esta tesis hace una propuesta de modelización de colecciones basada en una nueva clasificación de colecciones de acuerdo a sus características estructurales (homogeneidad, unicidad, orden y cardinalidad). Esta clasificación permite definir una taxonomía con hasta 16 tipos de colecciones distintas. Entre otras ventajas, esta nueva clasificación permite aprovechar la semántica de las propiedades estructurales de cada tipo de colección para realizar comparaciones utilizando las funciones de similitud y disimilitud más apropiadas. De este modo, la tesis desarrolla además un nuevo catálogo de funciones de similitud para las distintas colecciones, donde se han recogido las funciones de (di)similitud más conocidas y también algunas nuevas. Esta propuesta se ha implementado mediante dos ontologías paralelas, la ontología E-Collections, que representa los distintos tipos de colecciones de la taxonomía y su axiomática, y la ontología SIMEON (Similarity Measures Ontology) que representa los tipos de funciones de (di)similitud para cada tipo de colección. Gracias a estas ontologías, para comparar dos colecciones, una vez representadas como instancias de la clase más apropiada de la ontología E-Collections, automáticamente se sabe qué funciones de (di)similitud de la ontología SIMEON pueden utilizarse para su comparación. Abstract This thesis studies the representation, modeling and comparison of collections in the Semantic Web using ontologies. Collections, understood as groups of objects or elements with their own identities, are constructions that appear frequently in almost all areas of the real world. Therefore, it is essential to have conceptualizations of these abstract structures and representations of these conceptualizations in computer systems, that define their semantic properly. While in many areas of Computer Science and Artificial Intelligence, such as Programming, Databases or Information Retrieval, the collections have been extensively studied and there are representations that match many conceptualizations, in the field Semantic Web, however, their study has been quite limited. In fact, there are few representations of collections using ontologies so far, and they only cover some types of collections and have important limitations. This hinders a proper representation of collections and other common tasks like comparing collections, something critical in usual operations such as semantic search or linking data on the Semantic Web. To solve this problem this thesis makes a proposal for modelling collections based on a new classification of collections according to their structural characteristics (homogeneity, uniqueness, order and cardinality). This classification allows to define a taxonomy with up to 16 different types of collections. Among other advantages, this new classification can leverage the semantics of the structural properties of each type of collection to make comparisons using the most appropriate (dis)similarity functions. Thus, the thesis also develops a new catalog of similarity functions for the different types of collections. This catalog contains the most common (dis)similarity functions as well as new ones. This proposal is implemented through two parallel ontologies, the E-Collections ontology that represents the different types of collections in the taxonomy and their axiomatic, and the SIMEON ontology (Similarity Measures Ontology) that represents the types of (dis)similarity functions for each type of collection. Thanks to these ontologies, to compare two collections, once represented as instances of the appropriate class of E-Collections ontology, we can know automatically which (dis)similarity functions of the SIMEON ontology are suitable for the comparison. Finally, the feasibility and usefulness of this modeling and comparison of collections proposal is proved in the field of oenology, applying both E-Collections and SIMEON ontologies to the representation and comparison of wines with the E-Baco ontology.
Resumo:
Background: Semantic Web technologies have been widely applied in the life sciences, for example by data providers such as OpenLifeData and through web services frameworks such as SADI. The recently reported OpenLifeData2SADI project offers access to the vast OpenLifeData data store through SADI services. Findings: This article describes how to merge data retrieved from OpenLifeData2SADI with other SADI services using the Galaxy bioinformatics analysis platform, thus making this semantic data more amenable to complex analyses. This is demonstrated using a working example, which is made distributable and reproducible through a Docker image that includes SADI tools, along with the data and workflows that constitute the demonstration. Conclusions: The combination of Galaxy and Docker offers a solution for faithfully reproducing and sharing complex data retrieval and analysis workflows based on the SADI Semantic web service design patterns.