21 resultados para Rotating bending
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Resumo:
It is common to find structures that need to be reinforced due to deterioration or because the function of the building changes. The economic cost involved in these forms of interventions is considerable. Therefore, it is interesting to progress in the existing strengthening techniques and the study of new reinforcement systems. This paper analyses the behaviour of timber beams reinforced with carbon and basalt fiber composite materials. The main objective of this study is to test the stiffness increase produced by the carbon and basalt FRP on reinforced beams. The results show the stiffness increase produced by the different types of reinforcement.
Resumo:
The paper reports on a collaborative effort between the Swiss Federal Nuclear Safety Inspectorate (ENSI) and their consultants Principia and Stangenberg. As part of the IMPACT III project, reduced scale impact tests of reinforced concrete structures were carried out. The simulation of test X3 is presented here and the numerical results are compared with those obtained in the test, carried out in August 2013. The general object is to improve the safety of nuclear facilities and, more specifically, to demonstrate the capabilities of current simulation techniques to reproduce the behaviour of a reinforced concrete structure impacted by a soft missile. The missile is a steel tube with a mass of 50 kg and travelling at 140 m/s. The target is a 250 mm thick, 2,1 m by 2,1 m reinforced concrete wall, held in a stiff supporting frame. The reinforcement includes both longitudinal and transverse rebars. Calculations were carried out before and after the test with Abaqus (Principia) and SOFiSTiK (Stangenberg). In the Abaqus simulation the concrete is modelled using solid elements and a damaged plasticity formulation, the rebars with embedded beam elements, and the missile with shell elements. In SOFiSTiK the target is modelled with non-linear, layered shell elements for the reinforcement on both sides; non-linear shear deformations of shell/plate elements are approximately included. The results generally indicate a good agreement between calculations and measurements.
Resumo:
We derive a semi-analytic formulation that enables the study of the long-term dynamics of fast-rotating inert tethers around planetary satellites. These equations take into account the coupling between the translational and rotational motion, which has a non-negligible impact on the dynamics, as the orbital motion of the tether center of mass strongly depends on the tether plane of rotation and its spin rate, and vice-versa. We use these governing equations to explore the effects of this coupling on the dynamics, the lifetime of frozen orbits and the precession of the plane of rotation of the tether.
Resumo:
The stabilizing effect of grouping rotor blades in pairs has been assessed both, numerically and experimentally. The bending and torsion modes of a low aspect ratio high speed turbine cascade tested in the non-rotating test facility at EPFL (Ecole Polytechnique Fédérale de Lausanne) have been chosen as the case study. The controlled vibration of 20 blades in travelling wave form was performed by means of an electromagnetic excitation system, enabling the adjustement of the vibration amplitude and inter blade phase at a given frequency. Unsteady pressure transducers located along the blade mid-section were used to obtain the modulus and phase of the unsteady pressure caused by the airfoil motion. The stabilizing effect of the torsion mode was clearly observed both in the experiments and the simulations, however the effect of grouping the blades in pairs in the minimum damping at the tested frequency was marginal in the bending mode. A numerical tool was validated using the available experimental data and then used to extend the results at lower and more relevant reduced frequencies. It is shown that the stabilizing effect exists for the bending and torsion modes in the frequency range typical of low-pressure turbines. It is concluded that the stabilizing effect of this configuration is due to the shielding effect of the pressure side of the airfoil that defines the passage of the pair on the suction side of the same passage, since the relative motion between both is null. This effect is observed both in the experiments and simulations.
Resumo:
Existe normalmente el propósito de obtener la mejor solución posible cuando se plantea un problema estructural, entendiendo como mejor la solución que cumpliendo los requisitos estructurales, de uso, etc., tiene un coste físico menor. En una primera aproximación se puede representar el coste físico por medio del peso propio de la estructura, lo que permite plantear la búsqueda de la mejor solución como la de menor peso. Desde un punto de vista práctico, la obtención de buenas soluciones—es decir, soluciones cuyo coste sea solo ligeramente mayor que el de la mejor solución— es una tarea tan importante como la obtención de óptimos absolutos, algo en general difícilmente abordable. Para disponer de una medida de la eficiencia que haga posible la comparación entre soluciones se propone la siguiente definición de rendimiento estructural: la razón entre la carga útil que hay que soportar y la carga total que hay que contabilizar (la suma de la carga útil y el peso propio). La forma estructural puede considerarse compuesta por cuatro conceptos, que junto con el material, definen una estructura: tamaño, esquema, proporción, y grueso.Galileo (1638) propuso la existencia de un tamaño insuperable para cada problema estructural— el tamaño para el que el peso propio agota una estructura para un esquema y proporción dados—. Dicho tamaño, o alcance estructural, será distinto para cada material utilizado; la única información necesaria del material para su determinación es la razón entre su resistencia y su peso especifico, una magnitud a la que denominamos alcance del material. En estructuras de tamaño muy pequeño en relación con su alcance estructural la anterior definición de rendimiento es inútil. En este caso —estructuras de “talla nula” en las que el peso propio es despreciable frente a la carga útil— se propone como medida del coste la magnitud adimensional que denominamos número de Michell, que se deriva de la “cantidad” introducida por A. G. M. Michell en su artículo seminal de 1904, desarrollado a partir de un lema de J. C. Maxwell de 1870. A finales del siglo pasado, R. Aroca combino las teorías de Galileo y de Maxwell y Michell, proponiendo una regla de diseño de fácil aplicación (regla GA), que permite la estimación del alcance y del rendimiento de una forma estructural. En el presente trabajo se estudia la eficiencia de estructuras trianguladas en problemas estructurales de flexión, teniendo en cuenta la influencia del tamaño. Por un lado, en el caso de estructuras de tamaño nulo se exploran esquemas cercanos al optimo mediante diversos métodos de minoración, con el objetivo de obtener formas cuyo coste (medido con su numero deMichell) sea muy próximo al del optimo absoluto pero obteniendo una reducción importante de su complejidad. Por otro lado, se presenta un método para determinar el alcance estructural de estructuras trianguladas (teniendo en cuenta el efecto local de las flexiones en los elementos de dichas estructuras), comparando su resultado con el obtenido al aplicar la regla GA, mostrando las condiciones en las que es de aplicación. Por último se identifican las líneas de investigación futura: la medida de la complejidad; la contabilidad del coste de las cimentaciones y la extensión de los métodos de minoración cuando se tiene en cuenta el peso propio. ABSTRACT When a structural problem is posed, the intention is usually to obtain the best solution, understanding this as the solution that fulfilling the different requirements: structural, use, etc., has the lowest physical cost. In a first approximation, the physical cost can be represented by the self-weight of the structure; this allows to consider the search of the best solution as the one with the lowest self-weight. But, from a practical point of view, obtaining good solutions—i.e. solutions with higher although comparable physical cost than the optimum— can be as important as finding the optimal ones, because this is, generally, a not affordable task. In order to have a measure of the efficiency that allows the comparison between different solutions, a definition of structural efficiency is proposed: the ratio between the useful load and the total load —i.e. the useful load plus the self-weight resulting of the structural sizing—. The structural form can be considered to be formed by four concepts, which together with its material, completely define a particular structure. These are: Size, Schema, Slenderness or Proportion, and Thickness. Galileo (1638) postulated the existence of an insurmountable size for structural problems—the size for which a structure with a given schema and a given slenderness, is only able to resist its self-weight—. Such size, or structural scope will be different for every different used material; the only needed information about the material to determine such size is the ratio between its allowable stress and its specific weight: a characteristic length that we name material structural scope. The definition of efficiency given above is not useful for structures that have a small size in comparison with the insurmountable size. In this case—structures with null size, inwhich the self-weight is negligible in comparisonwith the useful load—we use as measure of the cost the dimensionless magnitude that we call Michell’s number, an amount derived from the “quantity” introduced by A. G. M. Michell in his seminal article published in 1904, developed out of a result from J. C.Maxwell of 1870. R. Aroca joined the theories of Galileo and the theories of Maxwell and Michell, obtaining some design rules of direct application (that we denominate “GA rule”), that allow the estimation of the structural scope and the efficiency of a structural schema. In this work the efficiency of truss-like structures resolving bending problems is studied, taking into consideration the influence of the size. On the one hand, in the case of structures with null size, near-optimal layouts are explored using several minimization methods, in order to obtain forms with cost near to the absolute optimum but with a significant reduction of the complexity. On the other hand, a method for the determination of the insurmountable size for truss-like structures is shown, having into account local bending effects. The results are checked with the GA rule, showing the conditions in which it is applicable. Finally, some directions for future research are proposed: the measure of the complexity, the cost of foundations and the extension of optimization methods having into account the self-weight.