26 resultados para Race car
Resumo:
Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) ? as opposed to fixed limits ? have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator, which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain).
Resumo:
In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation.
Resumo:
This paper presents an ant colony optimization algorithm to sequence the mixed assembly lines considering the inventory and the replenishment of components. This is a NP-problem that cannot be solved to optimality by exact methods when the size of the problem growth. Groups of specialized ants are implemented to solve the different parts of the problem. This is intended to differentiate each part of the problem. Different types of pheromone structures are created to identify good car sequences, and good routes for the replenishment of components vehicle. The contribution of this paper is the collaborative approach of the ACO for the mixed assembly line and the replenishment of components and the jointly solution of the problem.
Resumo:
The road transportation sector is responsible for around 25% of total man-made CO2 emissions worldwide. Considerable efforts are therefore underway to reduce these emissions using several approaches, including improved vehicle technologies, traffic management and changing driving behaviour. Detailed traffic and emissions models are used extensively to assess the potential effects of these measures. However, if the input and calibration data are not sufficiently detailed there is an inherent risk that the results may be inaccurate. This article presents the use of Floating Car Data to derive useful speed and acceleration values in the process of traffic model calibration as a means of ensuring more accurate results when simulating the effects of particular measures. The data acquired includes instantaneous GPS coordinates to track and select the itineraries, and speed and engine performance extracted directly from the on-board diagnostics system. Once the data is processed, the variations in several calibration parameters can be analyzed by comparing the base case model with the measure application scenarios. Depending on the measure, the results show changes of up to 6.4% in maximum speed values, and reductions of nearly 15% in acceleration and braking levels, especially when eco-driving is applied.
Resumo:
The aim of this study was to investigate the effects of different swimming race constraints on the evolution of turn parameters. One hundred and fifty-eight national and regional level 200-m (meters) male swimming performances were video-analyzed using the individualized-distance model in the Open Comunidad de Madrid tournament. Turn (p < .001, ES = 0.36) and underwater distances (p < .001, ES = 0.38) as well as turn velocity (p < .001, ES = 0.69) significantly dropped throughout the race, although stroke velocity and underwater velocity were maintained in the last lap of the race (p > .05). Higher expertise swimmers obtained faster average velocities and longer distances in all the turn phases (p < .001, ES = 0.59), except the approach distance. In addition, national level swimmers showed the ability to maintain most of the turn parameters throughout the race, which assisted them in improving average velocity at the end of races. Therefore, the variations in the turning movements of a swimming race were expertise-related and focused on optimizing average velocity. Turning skills should be included in the swimming race action plan.
Resumo:
In this paper, a hydroelectric power plant with long tail-race tunnel has been modelled for assessing its contribution to secondary regulation reserve. Cavitation problems, caused by the discharge conduit length, are expected downstream the turbine where low pressure appears during regulation manoeuvres. Therefore, governor's gains should be selected taking into account these phenomena. On the other hand, regulation services bidden by the plant operator should fulfil TSO (Transmission System Operator) quality requirements. A methodology for tuning governor PI gains is proposed and applied to a Hydro power plant in pre-design phase in northwest area of Spain. The PI gains adjustment proposed provides a proper plant response, according to some established indexes, while avoiding cavitation phenomena.
Resumo:
The inbound logistic for feeding the workstation inside the factory represents a critical issue in the car manufacturing industry. Nowadays, this issue is even more critical than in the past since more types of car are being produced in the assembly lines. Consequently, as workstations have to install many types of components, they also need to have an inventory of different types of the component in a compact space. The replenishment is a critical issue since a lack of inventory could cause line stoppage or reworking. On the other hand, an excess of inventory could increase the holding cost or even block the replenishment paths. The decision of the replenishment routes cannot be made without taking into consideration the inventory needed by each station during the production time which will depend on the production sequence. This problem deals with medium-sized instances and it is solved using online solvers. The contribution of this paper is a MILP for the replenishment and inventory of the components in a car assembly line.
Resumo:
We define a capacity reserve model to dimension passenger car service installations according to the demographic distribution of the area to be serviced by using hospital?s emergency room analogies. Usually, service facilities are designed applying empirical methods, but customers arrive under uncertain conditions not included in the original estimations, and there is a gap between customer?s real demand and the service?s capacity. Our research establishes a valid methodology and covers the absence of recent researches and the lack of statistical techniques implementation, integrating demand uncertainty in a unique model built in stages by implementing ARIMA forecasting, queuing theory, and Monte Carlo simulation to optimize the service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Our model has proved to be a useful tool for optimal decision making under uncertainty integrating the prediction of the cost implicit in the reserve capacity to serve unexpected demand and defining a set of new process indicators, such us capacity, occupancy, and cost of capacity reserve never studied before. The new indicators are intended to optimize the service operation. This set of new indicators could be implemented in the information systems used in the passenger car services.
Resumo:
Formula Racing Team Manager (FRTM) se trata de un juego de un solo jugador, para Android, donde el jugador tendrá como objetivo principal ascender desde la quinta división inicial hasta la primera y lograr allí ganar la clasificación por equipos ante 19 equipos manejados por el sistema. Por el camino tendrá que gestionar una gran cantidad de tareas distintas en el juego, desde la gestión del equipo en sí a la gestión estratégica de las carreras. Para conseguir el objetivo será básico lograr una buena gestión económica, la fuente principal de ganancias son los patrocinadores, pudiendo contar con un total de cuatro simultáneamente. El dinero conseguido se utilizará en mejorar el equipo (empleados, coche y pilotos) lo máximo posible para conseguir mejores resultados en carrera. Hay una gran cantidad de circuitos disponibles, todos reales, combinando circuitos históricos del calendario de Fórmula 1 con actuales y con circuitos otros populares en otras categorías (a destacar la inclusión de carreras de resistencia como las 500 millas de Indianápolis o las 24 horas de Le Mans). Será importante entender bien los parámetros de cada circuito para lograr un buen resultado en todos ellos. La temporada se divide en 20 grandes premios, formado cada uno por tres sesiones (entrenamientos, clasificación y carrera). En los entrenamientos el jugador podrá, durante dos horas, dar todas las vueltas que cree oportuno hasta que su tiempo se agote, para encontrar así la mejor configuración posible para el coche, y obtener los datos de consumos y desgastes que encuentre necesarios para emplearlos en carrera. En la sesión de clasificación (separada en tres rondas), se decidirán las posiciones de salida en carrera Antes de la carrera el jugador deberá decidir qué estrategia utilizar en ella, escogiendo la configuración del coche, los compuestos de neumáticos y las cargas de combustible a utilizar en cada parada. Durante la carrera también podrá cambiar ciertos parámetros en caso de que la situación de carrera no se adapte a sus expectativas, teniendo así un control total de lo sucedido en carrera, como si de un director deportivo de un equipo real de Fórmula 1 se tratase. Durante la carrera, se irán simulando las vueltas cuando el jugador así lo desee y lo indique mediante un reproductor disponible. Posteriormente, al terminar la carrera volverá a predominar la gestión económica del equipo por parte del jugador, teniendo que controlar los desgastes de cada una de las diez piezas distintas del coche para evitar roturas, y volviendo a poder entrenar a pilotos y empleados. El juego está disponible tanto en español como en inglés. ABSTRACT. Formula Racing Team Manager (FRTM) is a single player game, for Android, where the player has the main objective of promoting from the initial fifth division to the first one, and winning there the championship against 19 teams managed by the system. On the way, the player will have to manage a different number of tasks in the game, from the team management to the race strategic management. To complete that objective a basic key is to achieve a good economic management, the main source of incomes are the sponsors; being able to have a total of four at the same time. The money received will have to be spent on improving the team (staff, car and drivers) the best as possible to try to achieve even better race results. There are a lot of available circuits throughout the game, all of them real, combining some historical from Formula 1 calendar with actual ones, and also with some popular circuits from other categories (to highlight the inclusion of endurance races like the 500miles from Indianapolis and the 24 hours of Le Mans). It will be basic to fully understand the parameters from each circuit to achieve a good result in all of them. The season is divided in 20 Grand Prix, every one of them composed by three sessions (free practice, qualifying and race). In the Free Practice session the player will get the chance to driver all the laps he can in two hours, to try to get the best possible setup for the car and to obtain data from tyres wear and fuel consumption. On the qualifying session (composed by three rounds), the starting grid for the race will be decided. Before the race, the player will have to choose the strategy to use, deciding the car setup, the tyres compound and the fuel inputs for every pit stop to do. Also, throughout the race, the player will get the chance to change some parameters of that strategy in case of the race not going as expected. On the race, every lap will be simulated when the player decides. And, after the race is finished, the player will have to work again on the economy and team management, controlling the wear of every car part to avoid malfunctions, and being able to train drivers and staff. The game is available in both spanish and english.
Resumo:
Pumped storage hydro plants (PSHP) can provide adequate energy storage and frequency regulation capacities in isolated power systems having significant renewable energy resources. Due to its high wind and solar potential, several plans have been developed for La Palma Island in the Canary archipelago, aimed at increasing the penetration of these energy sources. In this paper, the performance of the frequency control of La Palma power system is assessed, when the demand is supplied by the available wind and solar generation with the support of a PSHP which has been predesigned for this purpose. The frequency regulation is provided exclusively by the PSHP. Due to topographic and environmental constraints, this plant has a long tail-race tunnel without a surge tank. In this configuration, the effects of pressure waves cannot be neglected and, therefore, usual recommendations for PID governor tuning provide poor performance. A PI governor tuning criterion is proposed for the hydro plant and compared with other criteria according to several performance indices. Several scenarios considering solar and wind energy penetration have been simulated to check the plant response using the proposed criterion. This tuning of the PI governor maintains La Palma system frequency within grid code requirements.
Resumo:
El objetivo de esta investigación consiste en definir un modelo de reserva de capacidad, por analogías con emergencias hospitalarias, que pueda ser implementado en el sector de servicios. Este está específicamente enfocado a su aplicación en talleres de servicio de automóviles. Nuestra investigación incorpora la incertidumbre de la demanda en un modelo singular diseñado en etapas que agrupa técnicas ARIMA, teoría de colas y simulación Monte Carlo para definir los conceptos de capacidad y ocupación de servicio, que serán utilizados para minimizar el coste implícito de la reserva capacidad necesaria para atender a clientes que carecen de cita previa. Habitualmente, las compañías automovilísticas estiman la capacidad de sus instalaciones de servicio empíricamente, pero los clientes pueden llegar bajo condiciones de incertidumbre que no se tienen en cuenta en dichas estimaciones, por lo que existe una diferencia entre lo que el cliente realmente demanda y la capacidad que ofrece el servicio. Nuestro enfoque define una metodología válida para el sector automovilístico que cubre la ausencia genérica de investigaciones recientes y la habitual falta de aplicación de técnicas estadísticas en el sector. La equivalencia con la gestión de urgencias hospitalarias se ha validado a lo largo de la investigación en la se definen nuevos indicadores de proceso (KPIs) Tal y como hacen los hospitales, aplicamos modelos estocásticos para dimensionar las instalaciones de servicio de acuerdo con la distribución demográfica del área de influencia. El modelo final propuesto integra la predicción del coste implícito en la reserva de capacidad para atender la demanda no prevista. Asimismo, se ha desarrollado un código en Matlab que puede integrarse como un módulo adicional a los sistemas de información (DMS) que se usan actualmente en el sector, con el fin de emplear los nuevos indicadores de proceso definidos en el modelo. Los resultados principales del modelo son nuevos indicadores de servicio, tales como la capacidad, ocupación y coste de reserva de capacidad, que nunca antes han sido objeto de estudio en la industria automovilística, y que están orientados a gestionar la operativa del servicio. ABSTRACT Our aim is to define a Capacity Reserve model to be implemented in the service sector by hospital's emergency room (ER) analogies, with a practical approach to passenger car services. A stochastic model has been implemented using R and a Monte Carlo simulation code written in Matlab and has proved a very useful tool for optimal decision making under uncertainty. The research integrates demand uncertainty in a unique model which is built in stages by implementing ARIMA forecasting, Queuing Theory and a Monte Carlo simulation to define the concepts of service capacity and occupancy, minimizing the implicit cost of the capacity that must be reserved to service unexpected customers. Usually, passenger car companies estimate their service facilities capacity using empirical methods, but customers arrive under uncertain conditions not included in the estimations. Thus, there is a gap between customer’s real demand and the dealer’s capacity. This research sets a valid methodology for the passenger car industry to cover the generic absence of recent researches and the generic lack of statistical techniques implementation. The hospital’s emergency room (ER) equalization has been confirmed to be valid for the passenger car industry and new process indicators have been defined to support the study. As hospitals do, we aim to apply stochastic models to dimension installations according to the demographic distribution of the area to be serviced. The proposed model integrates the prediction of the cost implicit in the reserve capacity to serve unexpected demand. The Matlab code could be implemented as part of the existing information technology systems (ITs) to support the existing service management tools, creating a set of new process indicators. Main model outputs are new indicators, such us Capacity, Occupancy and Cost of Capacity Reserve, never studied in the passenger car service industry before, and intended to manage the service operation.