40 resultados para Ordinary differential equations. Initial value problem. Existenceand uniqueness. Euler method
Resumo:
In the process of value creation, organizations perform an intense intra-organizational dialog through which internal VS alignment is achieved towards certain strategic objectives. Within the context of complex organizational networks, were goal conflicts are preprogrammed through incentive structures, VS alignment as legitimation of action towards strategic goals has special interest. On the one hand it facilitates the access to necessary resources for goal achievement and on the other it increases the sustainability and supports commonly agreed upon decisions leading to success. This paper provides a winnerless process (WLP) differential equations model for quantifying intra-organizational value stream (VS) alignment dynamics that can help design sustainable lean management solutions. This paper presents ongoing research results that show how the model was implemented in one industrial facility.
Resumo:
Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.
Resumo:
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.
Resumo:
We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.
Resumo:
This work discusses an iterative procedure of shaping offset dual-reflector antennas based on geometrical optics considering both far-field and near-field measurements of amplitude and phase from the feed horn. The surfaces synthesized will transform a known radiation field of a feed to a desired aperture distribution. This technique is applied for both circular and elliptical apertures and has the advantage to simplify the problem compared with existing techniques based on solving nonlinear differential equations. A MATLAB tool has been developed to implement the shaping algorithms. This procedure is applied for the design of a 1.1 m high-gain antenna for the ESA’s Solar Orbiter spacecraft. This antenna operating at X-band will manage high data rate and high efficiency communications with Earth stations.
Resumo:
Corrosion of steel bars embedded in concrete has a great influence on structural performance and durability of reinforced concrete. Chloride penetration is considered to be a primary cause of concrete deterioration in a vast majority of structures. Therefore, modelling of chloride penetration into concrete has become an area of great interest. The present work focuses on modelling of chloride transport in concrete. The differential macroscopic equations which govern the problem were derived from the equations at the microscopic scale by comparing the porous network with a single equivalent pore whose properties are the same as the average properties of the real porous network. The resulting transport model, which accounts for diffusion, migration, advection, chloride binding and chloride precipitation, consists of three coupled differential equations. The first equation models the transport of chloride ions, while the other two model the flow of the pore water and the heat transfer. In order to calibrate the model, the material parameters to determine experimentally were identified. The differential equations were solved by means of the finite element method. The classical Galerkin method was employed for the pore solution flow and the heat transfer equations, while the streamline upwind Petrov Galerkin method was adopted for the transport equation in order to avoid spatial instabilities for advection dominated problems. The finite element codes are implemented in Matlab® . To retrieve a good understanding of the influence of each variable and parameter, a detailed sensitivity analysis of the model was carried out. In order to determine the diffusive and hygroscopic properties of the studied concretes, as well as their chloride binding capacity, an experimental analysis was performed. The model was successfully compared with experimental data obtained from an offshore oil platform located in Brazil. Moreover, apart from the main objectives, numerous results were obtained throughout this work. For instance, several diffusion coefficients and the relation between them are discussed. It is shown how the electric field set up between the ionic species depends on the gradient of the species’ concentrations. Furthermore, the capillary hysteresis effects are illustrated by a proposed model, which leads to the determination of several microstructure properties, such as the pore size distribution and the tortuosity-connectivity of the porous network. El fenómeno de corrosión del acero de refuerzo embebido en el hormigón ha tenido gran influencia en estructuras de hormigón armado, tanto en su funcionalidad estructural como en aspectos de durabilidad. La penetración de cloruros en el interior del hormigón esta considerada como el factor principal en el deterioro de la gran mayoría de estructuras. Por lo tanto, la modelización numérica de dicho fenómeno ha generado gran interés. El presente trabajo de investigación se centra en la modelización del transporte de cloruros en el interior del hormigón. Las ecuaciones diferenciales que gobiernan los fenómenos a nivel macroscópico se deducen de ecuaciones planteadas a nivel microscópico. Esto se obtiene comparando la red porosa con un poro equivalente, el cual mantiene las mismas propiedades de la red porosa real. El modelo está constituido por tres ecuaciones diferenciales acopladas que consideran el transporte de cloruros, el flujo de la solución de poro y la transferencia de calor. Con estas ecuaciones se tienen en cuenta los fenómenos de difusión, migración, advección, combinación y precipitación de cloruros. El análisis llevado a cabo en este trabajo ha definido los parámetros necesarios para calibrar el modelo. De acuerdo con ellas, se seleccionaron los ensayos experimentales a realizar. Las ecuaciones diferenciales se resolvieron mediante el método de elementos finitos. El método clásico de Galerkin se empleó para solucionar las ecuaciones de flujo de la solución de poro y de la transferencia de calor, mientras que el método streamline upwind Petrov-Galerkin se utilizó para resolver la ecuación de transporte de cloruros con la finalidad de evitar inestabilidades espaciales en problemas con advección dominante. El código de elementos finitos está implementado en Matlab® . Con el objetivo de facilitar la comprensión del grado de influencia de cada variable y parámetro, se realizó un análisis de sensibilidad detallado del modelo. Se llevó a cabo una campaña experimental sobre los hormigones estudiados, con el objeto de obtener sus propiedades difusivas, químicas e higroscópicas. El modelo se contrastó con datos experimentales obtenidos en una plataforma petrolera localizada en Brasil. Las simulaciones numéricas corroboraron los datos experimentales. Además, durante el desarrollo de la investigación se obtuvieron resultados paralelos a los planteados inicialmente. Por ejemplo, el análisis de diferentes coeficientes de difusión y la relación entre ellos. Así como también se observó que el campo eléctrico establecido entre las especies iónicas disueltas en la solución de poro depende del gradiente de concentración de las mismas. Los efectos de histéresis capilar son expresados por el modelo propuesto, el cual conduce a la determinación de una serie de propiedades microscópicas, tales como la distribución del tamaño de poro, además de la tortuosidad y conectividad de la red porosa.
Resumo:
In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.
Resumo:
In this work the concept of tracking integration in concentrating photovoltaics (CPV) is revisited and developed further. With respect to conventional CPV, tracking integration eliminates the clear separation between stationary units of optics and solar cells, and external solar trackers. This approach is capable of further increasing the concentration ratio and makes high concentrating photovoltaics (> 500x) available for single-axis tracker installations. The reduced external solar tracking effort enables possibly cheaper and more compact installations. Our proposed optical system uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. The lateral movement allows to combine both steering and concentration of the incident direct sun light. Given the specific symmetry conditions of the underlying optical design problem, rotational symmetric lenses are not ideal for this application. For this type of design problems, a new free-form optics design method presented in previous papers perfectly matches the symmetry. It is derived directly from Fermat's principle, leading to sets of functional differential equations allowing the successive calculation of the Taylor series coeficients of each implicit surface function up to very high orders. For optical systems designed for wide field of view and with clearly separated optical surfaces, this new analytic design method has potential application in both fields of nonimaging and imaging optics.
Resumo:
Let P be a system of n linear nonhomogeneous ordinary differential polynomials in a set U of n-1 differential indeterminates. Differential resultant formulas are presented to eliminate the differential indeterminates in U from P. These formulas are determinants of coefficient matrices of appropriate sets of derivatives of the differential polynomials in P, or in a linear perturbation Pe of P. In particular, the formula dfres(P) is the determinant of a matrix M(P) having no zero columns if the system P is ``super essential". As an application, if the system PP is sparse generic, such formulas can be used to compute the differential resultant dres(PP) introduced by Li, Gao and Yuan.
Resumo:
The sparse differential resultant dres(P) of an overdetermined system P of generic nonhomogeneous ordinary differential polynomials, was formally defined recently by Li, Gao and Yuan (2011). In this note, a differential resultant formula dfres(P) is defined and proved to be nonzero for linear "super essential" systems. In the linear case, dres(P) is proved to be equal, up to a nonzero constant, to dfres(P*) for the supper essential subsystem P* of P.
Resumo:
In this paper an analytical static approach to analyse buried tunnels under seismic surface waves (Rayleigh and Love waves), propagating parallel to the tunnels axis, is provided. In the proposed method, the tunnel is considered as a beam on elastic foundation by using a Winkler model to represent the subgrade reaction and the soil-structure interaction. The seismic load is imposed by giving at the base of the soil springs a determined configuration corresponding to the free-field motion. From the solution of the differential governing equations of the problem, results are obtained in form of relative displacements between points of tunnel, and therefore the seismic bending moments and shearing forces, acting on the tunnel cross section, can be computed.
Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas
Resumo:
El objetivo fundamental de esta tesis es la caracterización de la morfología y del estado de deformaciones y tensiones del Glaciar Hurd (Isla Livingston, Archipiélago de las Shetland del Sur, Antártida), mediante una combinación de observaciones de campo, registros de georradar y simulaciones numéricas. La morfología y el estado de deformaciones y tensiones actuales son la expresión de la evolución dinámica del glaciar desde tiempos pretéritos hasta recientes, y su análisis nos dará las pautas con las cuales ser capaces de predecir, con el apoyo de las simulaciones numéricas, su evolución futura. El primer aspecto que se aborda es el estudio de las estructuras que pueden observarse en la superficie del glaciar. Describimos las distintas técnicas utilizadas (medidas de campo, fotointerpretación de ortofotografías, análisis geoquímico de cenizas volcánicas, etc.) y presentamos el análisis e interpretación de los resultados morfo-estructurales, así como la correlación, mediante análisis geoquímicos (fluorescencia de rayos X), entre las cenizas volcánicas que extruyen en la superficie del Glaciar Hurd y las del volcán Decepción, origen de las cenizas. Esto nos permite realizar una datación de las mismas como Tefra 1, correspondiente a la erupción de 1970, Tefra 2, correspondiente a las erupciones pre-1829, y el conjunto Tefra 3, asociado a las erupciones más antiguas. En segundo lugar nos ocupamos de las estructuras presentes en el interior del glaciar, cuya herramienta de detección fundamental es el georradar. Identificadas estas estructuras internas, las vinculamos con las observadas en la superficie del glaciar. También hemos estudiado la estructura hidrotérmica del glaciar, obteniendo una serie de evidencias adicionales de su carácter politérmico. Entre éstas se contaban, hasta ahora, las basadas en el valor del parámetro de rigidez de la relación constitutiva del hielo determinada por ajuste de modelos dinámicos y observaciones realizados por Otero (2008) y las basadas en las velocidades de las ondas de radar en el hielo determinadas con el método de punto medio común por Navarro y otros (2009). Las evidencias adicionales que aportamos en esta tesis son: 1) la presencia de estructuras típicas de régimen compresivo en la zona terminal del glaciar y de cizalla en los márgenes del mismo, y 2) la presencia de un estrato superficial de hielo frío (por encima de otro templado) en la zona de ablación de los tres lóbulos del Glaciar Hurd –Sally Rocks, Argentina y Las Palmas–, que alcanzan espesores de 70, 50 y 40 m, respectivamente. Este estrato de hielo frío está probablemente congelado al lecho subglaciar en la zona terminal (Molina y otros, 2007; esta tesis). Por último, nos ocupamos de la simulación numérica de la dinámica glaciar. Presentamos el modelo físico-matemático utilizado, discutimos sus condiciones de contorno y cómo éstas se miden en los trabajos de campo, y describimos el procedimiento de resolución numérica del sistema de ecuaciones parciales del modelo. Presentamos los resultados para los campos de velocidades, deformaciones y tensiones, comparando estos resultados con las estructuras observadas. También incluimos el análisis de las elipses de deformación acumulativa, que proporcionan información sobre las estructuras a las que puede dar lugar la evolución del estado de deformaciones y tensiones a las que se ve sometido el hielo según avanza, lentamente, desde la cabecera hasta la zona terminal del glaciar, con tiempos de tránsito de hasta 1.250 años, recogiendo así la historia de deformaciones en el glaciar. Concluyendo, ponemos de manifiesto en esta tesis que las medidas de campo de las estructuras y niveles de cenizas, las medidas de georradar y las simulaciones numéricas de la dinámica glaciar, realizadas de forma combinada, permiten caracterizar el régimen actual de velocidades, deformaciones y tensiones del glaciar, entender su evolución en el pasado y predecir su evolución futura. ABSTRACT The main objective of this thesis is to characterize the morphology and the state of strains and stresses of Hurd Glacier (Livingston Island, South Shetland Islands archipelago, Antarctica) through a combination of field observations, ground-penetrating radar measurements and numerical simulations. The morphology and the current state of strain and stresses are the expression of the dynamic evolution of the glacier from the past to recent times, and their analysis gives us the guidelines to be able to predict, with the support of numerical simulations, its future evolution. The first subject addressed is the study of structures that can be observed on the glacier surface. We describe the different techniques used (field measurements, photointerpretation of orthophotos, geochemical analysis of volcanic ashes, etc.) and we present the analysis and interpretation of the morpho-structural results, as well as the correlation with geochemical analysis (XRF) between the volcanic ashes extruded to the surface of Hurd Glacier and those of Deception Island volcano, from which the ashes originate. This allows us dating the ashes as Tephra 1, corresponding to the 1970 eruption, Tephra 2, corresponding to the pre-1829 eruptions, and the Tephra 3 group, associated with older eruptions. Secondly we focus on the study of the structures present within the glacier, which are detected with the help of ground-penetrating radar. Once identified, we link these internal structures with those observed on the glacier surface. We also study the hydrothermal structure of the glacier, getting a series of additional evidences of its polythermal structure. Among the evidences available so far, we can mention those based on the value of the stiffness parameter of the constitutive relation of ice, determined by fitting dynamic models to observations, as done by Otero (2008), and those based on the velocity of propagation of the radar waves through the glacier ice, measured using the common midpoint method, as done by Navarro et al. (2009). The additional evidences that we provide in this thesis are: 1) the presence of structures typical of compressive regime in the terminal zone of the glacier, together with shear at its margins, and 2) the presence of a surface layer of cold ice (overlying a layer of temperate ice) in the ablation zone of the three lobes of Hurd Glacier –Sally Rocks, Argentina and Las Palmas–, reaching thicknesses of 70, 50 and 40 m, respectively. This cold layer is probably frozen to the subglacial bed in the terminal zone (Molina and others 2007; this thesis). Finally, we deal with the numerical simulation of glacier dynamics. We present the physical-mathematical model, discuss its boundary conditions and how they are measured in the field work, and describe the method of numerical solution of the model’s partial differential equations. We present the results for the velocity, strain and stress fields, comparing these results with the observed structures. We also include an analysis of the ellipses of cumulative deformation, which provide information about the structures that can result from the evolution of the strain and stress regime of the glacier ice as it moves slowly from the head to the snout of the glacier, with transit times of up to 1,250 years, so picking the history of deformation of the glacier. Summarizing, we show in this thesis that field measurements of structures and ash layers, ground-penetrating radar measurements and numerical simulations of glacier dynamics, performed in combination, allow us to characterize the current regime of velocities, strains and stresses of the glacier, to understand its past evolution and to predict its future evolution.
Resumo:
The option value problem with two costs is written as a variational inequality. The advantage of this formulation is that it takes place in a fixed domain. Thus no front tracking is needed for numerical approximation of the free boundary. An iterative algorithm is proposed which can be used to solve the nonlinear system obtained by finite differences or finite elements procedures. Especial care has to be taken in the design of differences finites schemes o finite elements due to the degeneracy of the differential operator. These schemes can be absortion or convection dominated nearly to the axis. This is a preliminary note to the study of this kind of problems.
Resumo:
Los modelos de termomecánica glaciar están definidos mediante sistemas de ecuaciones en derivadas parciales que establecen los principios básicos de conservación de masa, momento lineal y energía, acompañados por una ley constitutiva que define la relación entre las tensiones a las que está sometido el hielo glaciar y las deformaciones resultantes de las mismas. La resolución de estas ecuaciones requiere la definición precisa del dominio (la geometría del glaciar, obtenido a partir de medidas topográficas y de georradar), así como contar con un conjunto de condiciones de contorno, que se obtienen a partir de medidas de campo de las variables implicadas y que constituyen un conjunto de datos geoespaciales. El objetivo fundamental de esta tesis es desarrollar una serie de herramientas que nos permitan definir con precisión la geometría del glaciar y disponer de un conjunto adecuado de valores de las variables a utilizar como condiciones de contorno del problema. Para ello, en esta tesis se aborda la recopilación, la integración y el estudio de los datos geoespaciales existentes para la Península Hurd, en la Isla Livingston (Antártida), generados desde el año 1957 hasta la actualidad, en un sistema de información geográfica. Del correcto tratamiento y procesamiento de estos datos se obtienen otra serie de elementos que nos permiten realizar la simulación numérica del régimen termomecánico presente de los glaciares de Península Hurd, así como su evolución futura. Con este objetivo se desarrolla en primer lugar un inventario completo de datos geoespaciales y se realiza un procesado de los datos capturados en campo, para establecer un sistema de referencia común a todos ellos. Se unifican además todos los datos bajo un mismo formato estándar de almacenamiento e intercambio de información, generándose los metadatos correspondientes. Se desarrollan asimismo técnicas para la mejora de los procedimientos de captura y procesado de los datos, de forma que se minimicen los errores y se disponga de estimaciones fiables de los mismos. El hecho de que toda la información se integre en un sistema de información geográfica (una vez producida la normalización e inventariado de la misma) permite su consulta rápida y ágil por terceros. Además, hace posible efectuar sobre ella una serie de operaciones conducentes a la obtención de nuevas capas de información. El análisis de estos nuevos datos permite explicar el comportamiento pasado de los glaciares objeto de estudio y proporciona elementos esenciales para la simulación de su comportamiento futuro. ABSTRACT Glacier thermo-mechanical models are defined by systems of partial differential equations stating the basic principles of conservation of mass, momentum and energy, accompanied by a constitutive principle that defines the relationship between the stresses acting on the ice and the resulting deformations. The solution of these equations requires an accurate definition of the model domain (the geometry of the glacier, obtained from topographical and ground penetrating radar measurements), as well as a set of boundary conditions, which are obtained from measurements of the variables involved and define a set of geospatial data. The main objective of this thesis is to develop tools able to provide an accurate definition of the glacier geometry and getting a proper set of values for the variables to be used as boundary conditions of our problem. With the above aim, this thesis focuses on the collection, compilation and study of the geospatial data existing for the Hurd Peninsula on Livingston Island, Antarctica, generated since 1957 to present, into a geographic information system. The correct handling and processing of these data results on a new collection of elements that allow us to numerically model the present state and the future evolution of Hurd Peninsula glaciers. First, a complete inventory of geospatial data is developed and the captured data are processed, with the aim of establishing a reference system common to all collections of data. All data are stored under a common standard format, and the corresponding metadata are generated to facilitate the information exchange. We also develop techniques for the improvement of the procedures used for capturing and processing the data, such that the errors are minimized and better estimated. All information is integrated into a geographic information system (once produced the standardization and inventory of it). This allows easy and fast viewing and consulting of the data by third parties. Also, it is possible to carry out a series of operations leading to the production of new layers of information. The analysis of these new data allows to explain past glacier behavior, and provides essential elements for explaining its future evolution.
Resumo:
Purely data-driven approaches for machine learning present difficulties when data are scarce relative to the complexity of the model or when the model is forced to extrapolate. On the other hand, purely mechanistic approaches need to identify and specify all the interactions in the problem at hand (which may not be feasible) and still leave the issue of how to parameterize the system. In this paper, we present a hybrid approach using Gaussian processes and differential equations to combine data-driven modeling with a physical model of the system. We show how different, physically inspired, kernel functions can be developed through sensible, simple, mechanistic assumptions about the underlying system. The versatility of our approach is illustrated with three case studies from motion capture, computational biology, and geostatistics.