33 resultados para Model-driven development. Domain-specific languages. Case study
Resumo:
This paper presents a new methodology to build parametric models to estimate global solar irradiation adjusted to specific on-site characteristics based on the evaluation of variable im- portance. Thus, those variables higly correlated to solar irradiation on a site are implemented in the model and therefore, different models might be proposed under different climates. This methodology is applied in a study case in La Rioja region (northern Spain). A new model is proposed and evaluated on stability and accuracy against a review of twenty-two already exist- ing parametric models based on temperatures and rainfall in seventeen meteorological stations in La Rioja. The methodology of model evaluation is based on bootstrapping, which leads to achieve a high level of confidence in model calibration and validation from short time series (in this case five years, from 2007 to 2011). The model proposed improves the estimates of the other twenty-two models with average mean absolute error (MAE) of 2.195 MJ/m2 day and average confidence interval width (95% C.I., n=100) of 0.261 MJ/m2 day. 41.65% of the daily residuals in the case of SIAR and 20.12% in that of SOS Rioja fall within the uncertainty tolerance of the pyranometers of the two networks (10% and 5%, respectively). Relative differences between measured and estimated irradiation on an annual cumulative basis are below 4.82%. Thus, the proposed model might be useful to estimate annual sums of global solar irradiation, reaching insignificant differences between measurements from pyranometers.
Resumo:
In this paper, a simulation tool for assisting the deployment of wireless sensor network is introduced and simulation results are verified under a specific indoor environment. The simulation tool supports two modes: deterministic mode and stochastic mode. The deterministic mode is environment dependent in which the information of environment should be provided beforehand. Ray tracing method and deterministic propagation model are employed in order to increase the accuracy of the estimated coverage, connectivity and routing; the stochastic mode is useful for large scale random deployment without previous knowledge on geographic information. Dynamic Source Routing protocol (DSR) and Ad hoc On-Demand Distance Vector Routing protocol (AODV) are implemented in order to calculate the topology of WSN. Hence this tool gives direct view on the performance of WSN and assists users in finding the potential problems of wireless sensor network before real deployment. At the end, a case study is realized in Centro de Electronica Industrial (CEI), the simulation results on coverage, connectivity and routing are verified by the measurement.
Resumo:
An analysis and comparison of daily and yearly solar irradiation from the satellite CM SAF database and a set of 301 stations from the Spanish SIAR network is performed using data of 2010 and 2011. This analysis is completed with the comparison of the estimations of effective irradiation incident on three different tilted planes (fixed, two axis tracking, north-south hori- zontal axis) using irradiation from these two data sources. Finally, a new map of yearly values of irradiation both on the horizontal plane and on inclined planes is produced mixing both sources with geostatistical techniques (kriging with external drift, KED) The Mean Absolute Difference (MAD) between CM SAF and SIAR is approximately 4% for the irradiation on the horizontal plane and is comprised between 5% and 6% for the irradiation incident on the inclined planes. The MAD between KED and SIAR, and KED and CM SAF is approximately 3% for the irradiation on the horizontal plane and is comprised between 3% and 4% for the irradiation incident on the inclined planes. The methods have been implemented using free software, available as supplementary ma- terial, and the data sources are freely available without restrictions.
Resumo:
The characterisation of mineral texture has been a major concern for process mineralogists, as liberation characteristics of the ores are intimately related to the mineralogical texture. While a great effort has been done to automatically characterise texture in unbroken ores, the characterisation of textural attributes in mineral particles is usually descriptive. However, the quantitative characterisation of texture in mineral particles is essential to improve and predict the performance of minerallurgical processes (i.e. all the processes involved in the liberation and separation of the mineral of interest) and to achieve a more accurate geometallurgical model. Driven by this necessity of achieving a more complete characterisation of textural attributes in mineral particles, a methodology has been recently developed to automatically characterise the type of intergrowth between mineral phases within particles by means of digital image analysis. In this methodology, a set ofminerallurgical indices has been developed to quantify different mineralogical features and to identify the intergrowth pattern by discriminant analysis. The paper shows the application of the methodology to the textural characterisation of chalcopyrite in the rougher concentrate of the Kansanshi copper mine (Zambia). In this sample, the variety of intergrowth patterns of chalcopyrite with the other minerals has been used to illustrate the methodology. The results obtained show that the method identifies the intergrowth type and provides quantitative information to achieve a complete and detailed mineralogical characterisation. Therefore, the use of this methodology as a routinely tool in automated mineralogy would contribute to a better understanding of the ore behaviour during liberation and separation processes.
Resumo:
Understanding the location patterns of firms within a region has proved to be an important factor to study the development of urban form. Moreover, the study of firms location patterns allows the implementation of the adequate policy strategies to increase firms location rate in certain areas, for example when practitioners are dealing with deprived zones. The aim of this paper is to map firmographic data as a function of its location over a certain period of time, and its employment weight in order to discuss which factors have a direct impact on the results and to highlight which specific areas need the adequate measures to promote employment and public transportation. As a case study, it is proposed to analyze the southwest region of Madrid. Spatial statistic methods were used for this study, which were found to be very efficient in order to evaluate which areas need special attention.
Resumo:
The Reinforcement of Building Structures is one of the topics of the Master in Building Innovation Technology (MBIT) of Universidad Politécnica de Madrid (UPM). Since the beginning of the delivery of this master, case studies have been chosen as the teaching methodology. For the 2011-2012 course the online education of this subject was implemented, instead of the classical learning based on attendance. Through ICT’s (Information and Communication Technologies) students are provided with much more and more selective information than through the classical learning. ICT’s can be used for search, enquiries and reporting. Using the online tools has been proved, through the results obtained and based on the surveys made amongst students, to be a successful experience.
Resumo:
The understanding of public perception to climate change is an essential factor in the development of adaptation policies. In the Mediterranean, agriculture, as the largest consumer of freshwater, has the highest potential to suffer adverse impacts of climate change. Future water availability predictions, conflicting interests among stakeholders and an increasing social concern about the environment further aggravate the situation. Therefore studying public support for adaptation policies can play a key role in successfully adapting the sector. The study site, approximately 36,000 hectares of rice fields in Seville (Spain), exemplifies an area in the Mediterranean where water needs to be carefully re-allocated in view of the limitations anticipated by climate change scenarios; in particular where conflicts will arise between water for agriculture and water for ‘natural’ ecosystems. This paper proposes an ex-ante evaluation of the societal support for adaptation policies. A survey of 117 respondents was conducted and a Logit model utilized to analyze which predictors positively or negatively affect people's support for adaptation policies. Results suggest that the main barriers to support these policies were economic losses and low climate change concern whereas the primary motivation factor was environmental commitment. Additionally, the main socio-demographic determinants were gender, age, education and family structure. In order to improve societal support for climate change adaptation policies, implementing educational and awareness raising initiatives will be the main challenges for policy makers to overcome.
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Case study on mobile applications UX: effect of the usage of a crosss-platform development framework
Resumo:
Cross-platform development frameworks for mobile applications promise important advantages in cost cuttings and easy maintenance, posing as a very good option for organizations interested in the design of mobile applications for several platforms. Given that platform conventions are especially important for the User eXperience (UX) of mobile applications, the usage of framework where the same code defines the behavior of the app in different platforms could have negative impact in the UX. The objetive of this study is comparing the cross-platform and the native approach for being able to determine if the selected development approach has any impact on the users in terms of UX. To be able to set a base line under this subject, study on cross-platform frameworks was performed to select the most appropriate one from a UX point of view. In order to achieve the objectives of this work, two development teams have developed two versions of the same application; one using framework that generates Android and iOS versions automatically, and another team developing native versions of the same application. The alternative versions for each platform have been evaluated with 37 users with a combination of a laboratory usability test and a longitudinal study. The results show that differences are minimal in the Android version, but in iOS, even if a reasonable good UX can be obtained with the usage of this framework by an UX-conscious design team, a higher level of UX can be obtained directly developing in native code.
Resumo:
La agricultura es uno de los sectores más afectados por el cambio climático. A pesar de haber demostrado a lo largo de la historia una gran capacidad para adaptarse a nuevas situaciones, hoy en día la agricultura se enfrenta a nuevos retos tales como satisfacer un elevado crecimiento en la demanda de alimentos, desarrollar una agricultura sostenible con el medio ambiente y reducir las emisiones de gases de efecto invernadero. El potencial de adaptación debe ser definido en un contexto que incluya el comportamiento humano, ya que éste juega un papel decisivo en la implementación final de las medidas. Por este motivo, y para desarrollar correctamente políticas que busquen influir en el comportamiento de los agricultores para fomentar la adaptación a estas nuevas condiciones, es necesario entender previamente los procesos de toma de decisiones a nivel individual o de explotación, así como los efectos de los factores que determinan las barreras o motivaciones de la implementación de medidas. Esta Tesis doctoral trata de profundizar en el análisis de factores que influyen en la toma de decisiones de los agricultores para adoptar estrategias de adaptación al cambio climático. Este trabajo revisa la literatura actual y desarrolla un marco metodológico a nivel local y regional. Dos casos de estudio a nivel local (Doñana, España y Makueni, Kenia) han sido llevados a cabo con el fin de explorar el comportamiento de los agricultores hacia la adaptación. Estos casos de estudio representan regiones con notables diferencias en climatología, impactos del cambio climático, barreras para la adaptación y niveles de desarrollo e influencia de las instituciones públicas y privadas en la agricultura. Mientras el caso de estudio de Doñana representa un ejemplo de problemas asociados al uso y escasez del agua donde se espera que se agraven en el futuro, el caso de estudio de Makueni ejemplifica una zona fuertemente amenazada por las predicciones de cambio climático, donde adicionalmente la falta de infraestructura y la tecnología juegan un papel crucial para la implementación de la adaptación. El caso de estudio a nivel regional trata de generalizar en África el comportamiento de los agricultores sobre la implementación de medidas. El marco metodológico que se ha seguido en este trabajo abarca una amplia gama de enfoques y métodos para la recolección y análisis de datos. Los métodos utilizados para la toma de datos incluyen la implementación de encuestas, entrevistas, talleres con grupos de interés, grupos focales de discusión, revisión de estudios previos y bases de datos públicas. Los métodos analíticos incluyen métodos estadísticos, análisis multi‐criterio para la toma de decisiones, modelos de optimización de uso del suelo y un índice compuesto calculado a través de indicadores. Los métodos estadísticos se han utilizado con el fin de evaluar la influencia de los factores socio‐económicos y psicológicos sobre la adopción de medidas de adaptación. Dentro de estos métodos se incluyen regresiones logísticas, análisis de componentes principales y modelos de ecuaciones estructurales. Mientras que el análisis multi‐criterio se ha utilizado con el fin de evaluar las opciones de adaptación de acuerdo a las opiniones de las diferentes partes interesadas, el modelo de optimización ha tenido como fin analizar la combinación óptima de medidas de adaptación. El índice compuesto se ha utilizado para evaluar a nivel regional la implementación de medidas de adaptación en África. En general, los resultados del estudio ponen de relieve la gran importancia de considerar diferentes escalas espaciales a la hora de evaluar la implementación de medidas de adaptación al cambio climático. El comportamiento de los agricultores es diferente entre lugares considerados a una escala local relativamente pequeña, por lo que la generalización de los patrones del comportamiento a escalas regionales o globales resulta relativamente compleja. Los resultados obtenidos han permitido identificar factores determinantes tanto socioeconómicos como psicológicos y calcular su efecto sobre la adopción de medidas de adaptación. Además han proporcionado una mejor comprensión del distinto papel que desempeñan los cinco tipos de capital (natural, físico, financiero, social y humano) en la implementación de estrategias de adaptación. Con este trabajo se proporciona información de gran interés en los procesos de desarrollo de políticas destinadas a mejorar el apoyo de la sociedad a tomar medidas contra el cambio climático. Por último, en el análisis a nivel regional se desarrolla un índice compuesto que muestra la probabilidad de adoptar medidas de adaptación en las regiones de África y se analizan las causas que determinan dicha probabilidad de adopción de medidas. ABSTRACT Agriculture is and will continue to be one of the sectors most affected by climate change. Despite having demonstrated throughout history a great ability to adapt, agriculture today faces new challenges such as meeting growing food demands, developing sustainable agriculture and reducing greenhouse gas emissions. Adaptation policies planned on global, regional or local scales are ultimately implemented in decision‐making processes at the farm or individual level so adaptation potentials have to be set within the context of individual behaviour and regional institutions. Policy instruments can play a formative role in the adoption of such policies by addressing incentives/disincentives that influence farmer’s behaviour. Hence understanding farm‐level decision‐making processes and the influence of determinants of adoption is crucial when designing policies aimed at fostering adoption. This thesis seeks to analyse the factors that influence decision‐making by farmers in relation to the uptake of adaptation options. This work reviews the current knowledge and develops a methodological framework at local and regional level. Whilst the case studies at the local level are conducted with the purpose of exploring farmer’s behaviour towards adaptation the case study at the regional level attempts to up‐scale and generalise theory on adoption of farmlevel adaptation options. The two case studies at the local level (Doñana, Spain and Makueni, Kenya) encompass areas with different; climates, impacts of climate change, adaptation constraints and limits, levels of development, institutional support for agriculture and influence from public and private institutions. Whilst the Doñana Case Study represents an area plagued with water‐usage issues, set to be aggravated further by climate change, Makueni Case study exemplifies an area decidedly threatened by climate change where a lack of infrastructure and technology plays a crucial role in the uptake of adaptation options. The proposed framework is based on a wide range of approaches for collecting and analysing data. The approaches used for data collection include the implementation of surveys, interviews, stakeholder workshops, focus group discussions, a review of previous case studies, and public databases. The analytical methods include statistical approaches, multi criteria analysis for decision‐making, land use optimisation models, and a composite index based on public databases. Statistical approaches are used to assess the influence of socio‐economic and psychological factors on the adoption or support for adaptation measures. The statistical approaches used are logistic regressions, principal component analysis and structural equation modelling. Whilst a multi criteria analysis approach is used to evaluate adaptation options according to the different perspectives of stakeholders, the optimisation model analyses the optimal combination of adaptation options. The composite index is developed to assess adoption of adaptation measures in Africa. Overall, the results of the study highlight the importance of considering various scales when assessing adoption of adaptation measures to climate change. As farmer’s behaviour varies at a local scale there is elevated complexity when generalising behavioural patterns for farmers at regional or global scales. The results identify and estimate the effect of most relevant socioeconomic and psychological factors that influence adoption of adaptation measures to climate change. They also provide a better understanding of the role of the five types of capital (natural, physical, financial, social, and human) on the uptake of farm‐level adaptation options. These assessments of determinants help to explain adoption of climate change measures and provide helpful information in order to design polices aimed at enhancing societal support for adaptation policies. Finally the analysis at the regional level develops a composite index which suggests the likelihood of the regions in Africa to adopt farm‐level adaptation measures and analyses the main causes of this likelihood of adoption.
Resumo:
In this paper we want to point out, by means of a case study, the importance of incorporating some knowledge engineering techniques to the processes of software engineering. Precisely, we are referring to the knowledge eduction techniques. We know the difficulty of requirements acquisition and its importance to minimise the risks of a software project, both in the development phase and in the maintenance phase. To capture the functional requirements use cases are generally used. However, as we will show in this paper, this technique is insufficient when the problem domain knowledge is only in the "experts? mind". In this situation, the combination of the use case with eduction techniques, in every development phase, will let us to discover the correct requirements.
Resumo:
Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”. Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.
Resumo:
The development of a web platform is a complex and interdisciplinary task, where people with different roles such as project manager, designer or developer participate. Different usability and User Experience evaluation methods can be used in each stage of the development life cycle, but not all of them have the same influence in the software development and in the final product or system. This article presents the study of the impact of these methods applied in the context of an e-Learning platform development. The results show that the impact has been strong from a developer's perspective. Developer team members considered that usability and User Experience evaluation allowed them mainly to identify design mistakes, improve the platform's usability and understand the end users and their needs in a better way. Interviews with potential users, clickmaps and scrollmaps were rated as the most useful methods. Finally, these methods were considered unanimously very useful in the context of the entire software development, only comparable to SCRUM meetings and overcoming the rest of involved factors.
Resumo:
Cross-platform development frameworks for mobile applications promise important advantages in cost cuttings and easy maintenance, posing as a very good option for organizations interested in the design of mobile applications for several platforms. Given that platform conventions are especially important for the User eXperience (UX) of mobile applications, the usage of a framework where the same code defines the behavior of the app in different platforms could have a negative impact in the UX. This paper describes a study where two independent teams have designed two different versions of a mobile application, one using a framework that generates Android and iOS versions automatically, and another team using native tools. The alternative versions for each platform have been evaluated with 37 users with a combination of a laboratory usability test and a longitudinal study. The results show that differences are minimal in the Android platform, but in iOS, even if a reasonably good UX can be obtained with the usage of this framework by an UX-conscious design team, a higher level of UX can be obtained directly developing with a native tool.
Resumo:
In this paper we present a dataset componsed of domain-specific sentiment lexicons in six languages for two domains. We used existing collections of reviews from Trip Advisor, Amazon, the Stanford Network Analysis Project and the OpinRank Review Dataset. We use an RDF model based on the lemon and Marl formats to represent the lexicons. We describe the methodology that we applied to generate the domain-specific lexicons and we provide access information to our datasets.