33 resultados para Irrigation laws


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En un olivar en seto de la variedad Arbequina, situado en la Puebla de Montalbán (Toledo), se aplicaron diferentes estrategias de riego deficitario durante el verano. Se evaluó el efecto del riego sobre la calidad del aceite. Los aceite procedentes del tratamiento de deficit severo de julio presentarion una mayor estabilidad oxidativa, lo que coincide con un mayor contenido en polifenoles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the real demand for climate protection when the purely individual perspective of existing revealed preference studies is relaxed. This is achieved in two treatments; first, we determine the information subjects receive about the demand revealed by other subjects in a similar decision making situation, second, collective action is implemented whereby all subjects are required to purchase the group?s median quantity at a given price. Participants in the experiment were offered the opportunity to contribute to climate protection by purchasing European Union Allowances. Allowances purchased were withdrawn from the European Emissions Trading Scheme. In our experiment, information about other subjects? behaviour has no treatment effect on the demand for climate protection. Under collective action however, the probability of purchasing allowances is higher compared to the reference treatment situation, an individual contribution mechanism. Furthermore, we observe a strong correlation between subjects? demand and their expectations about other participants? behaviour. When collective action is not available, subjects? e xpectations are consistent with free rider behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to analyze the common pool resource appropriation and public good provisiondecisions in a dynamic setting, testing the differences in behavior and performance between lab and field subjects. We performeda total of 45 games in Nicaragua, including 88 villagers in rural communities and 92 undergraduate students. In order to analyze sequential decision making, we introduce a dynamic and asymmetric irrigation game that combines the typical social dilemmas associated to irrigation systems management.In addition, in 9 out of 22 villagers’ groups, we implemented a treatment that included the disclosure of subjects’ appropriation of the common pool resource. The results reveal that the provision of individuals’ appropriation level results in higher appropriation in subsequent rounds. In addition, the results show that non-treated villagers provide more public good than treated villagers but if compared with students the differences are not significant. The results also suggest that appropriation levels are below the Nash prediction of full appropriation, but above the social efficient level. This results in an efficiency loss in the game that can be explained to a large extent by individual decisions on appropriation and public good contribution and by group appropriation behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studies the most beneficial way of allocating water in an irrigation community in water shortage situations. Therefore, it proposes that the irrigation surface area be divided into homogeneous zones, each with a beneficial relationship with respect to the water applied. The mathematical formula that enables one to obtain the optimal quota for the users or irrigation community as a whole has been found for individual relations of a quadratic or power type, and these have yielded different and complementary characteristics. Dimensionless variables have been used to display the results, and to compare with other alternative allocation rules such as the proportional rule, referencing the situation without water restrictions. As a result, for each water shortage situation, the water that is allocated to each user is obtained, together with the losses in individual income and the losses for the community as a whole. Furthermore, a proposal is put forth for establishing the marginal benefit from the water available, which could be of interest in enabling each community to analyze whether it is in its best interest to invest in increasing the resource, or to sell the resource to other users. Finally, an example is given to demonstrate how the method works and to show that, when the differences between the production schemes are considered, the differences in benefit reduction between the proportional allocation and the optimal allocation are also sizeable. Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)IR.1943-4774.0000667

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustaining irrigated agriculture to meet food production needs while maintaining aquatic ecosystems is at the heart of many policy debates in various parts of the world, especially in arid and semi-arid areas. Researchers and practitioners are increasingly calling for integrated approaches, and policy-makers are progressively supporting the inclusion of ecological and social aspects in water management programs. This paper contributes to this policy debate by providing an integrated economic-hydrologic modeling framework that captures the socio-economic and environmental effects of various policy initiatives and climate variability. This modeling integration includes a risk-based economic optimization model and a hydrologic water management simulation model that have been specified for the Middle Guadiana basin, a vulnerable drought-prone agro-ecological area with highly regulated river systems in southwest Spain. Namely, two key water policy interventions were investigated: the implementation of minimum environmental flows (supported by the European Water Framework Directive, EU WFD), and a reduction in the legal amount of water delivered for irrigation (planned measure included in the new Guadiana River Basin Management Plan, GRBMP, still under discussion). Results indicate that current patterns of excessive water use for irrigation in the basin may put environmental flow demands at risk, jeopardizing the WFD s goal of restoring the ?good ecological status? of water bodies by 2015. Conflicts between environmental and agricultural water uses will be stressed during prolonged dry episodes, and particularly in summer low-flow periods, when there is an important increase of crop irrigation water requirements. Securing minimum stream flows would entail a substantial reduction in irrigation water use for rice cultivation, which might affect the profitability and economic viability of small rice-growing farms located upstream in the river. The new GRBMP could contribute to balance competing water demands in the basin and to increase economic water productivity, but might not be sufficient to ensure the provision of environmental flows as required by the WFD. A thoroughly revision of the basin s water use concession system for irrigation seems to be needed in order to bring the GRBMP in line with the WFD objectives. Furthermore, the study illustrates that social, economic, institutional, and technological factors, in addition to bio-physical conditions, are important issues to be considered for designing and developing water management strategies. The research initiative presented in this paper demonstrates that hydro-economic models can explicitly integrate all these issues, constituting a valuable tool that could assist policy makers for implementing sustainable irrigation policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mediterranean climate is characterized by hot summer, high evapotranspiration rates, and scarce precipitations (400 mm per year) during grapevine cycle. These extremely dry conditions affect vineyard productivity and sustainability. Supplementary irrigation is a needed practice in order to maintain yield and quality. Almost all Spanish grape growing regions are characterized by these within this context, especially in the center region, where this study was performed. The main objective of this work was to study the influence of irrigation on yield and quality. For this aim, we applied different levels of irrigation (mm of water applied) during different stages of growth and berry maturity. Four experimental treatments were applied considering the amount of water and the moment of the application: T1: Water irrigation (420 mm) applied from bloom to maturity. T2: Corresponded to the traditional irrigation scheduling, from preveraison to maturity (154 mm). T3: Water irrigation from bloom to preveraison, and water deficit from veraison to maturity (312 mm). T4: Irrigation applied from preveraison to maturity (230 mm) Experimental vineyard, cv. Cabernet Sauvignon, was located in a commercial vineyard (Bodegas Licinia S.L.) in the hot region of Morata de Tajuña (Madrid). The trial was performed during 2010 and 2011 seasons. Our results showed that yield increased from 2010 to 2011 in the treatments with a higher amount of water appli ed, T1 and T3 (24 and 10 % of yield increase respectively). This was mainly due to an increase in bud fertility (nº of bunches per shoot). Furthermore, sugar content was higher in T3 (27.3 ºBrix), followed by T2 (27 ºBrix). By contrast, T4 (irrigation from veraison) presented the lowest solid soluble concentration and the highest acidity. These results suggest that grapevine has an intrinsic capacity to adapt to its environment. However, this adaptation capacity should be evaluated considering the sensibility of quality parameters during the maturity period (acidity, pH, aroma, color...) and its impact on yield. Here, we demonstrated that a higher amount of water irrigation applied was no linked to a negative effect on quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El entorno espacial actual hay un gran numero de micro-meteoritos y basura espacial generada por el hombre, lo cual plantea un riesgo para la seguridad de las operaciones en el espacio. La situación se agrava continuamente a causa de las colisiones de basura espacial en órbita, y los nuevos lanzamientos de satélites. Una parte significativa de esta basura son satélites muertos, y fragmentos de satélites resultantes de explosiones y colisiones de objetos en órbita. La mitigación de este problema se ha convertido en un tema de preocupación prioritario para todas las instituciones que participan en operaciones espaciales. Entre las soluciones existentes, las amarras electrodinámicas (EDT) proporcionan un eficiente dispositivo para el rápido de-orbitado de los satélites en órbita terrestre baja (LEO), al final de su vida útil. El campo de investigación de las amarras electrodinámicas (EDT) ha sido muy fructífero desde los años 70. Gracias a estudios teóricos, y a misiones para la demostración del funcionamiento de las amarras en órbita, esta tecnología se ha desarrollado muy rápidamente en las últimas décadas. Durante este período de investigación, se han identificado y superado múltiples problemas técnicos de diversa índole. Gran parte del funcionamiento básico del sistema EDT depende de su capacidad de supervivencia ante los micro-meteoritos y la basura espacial. Una amarra puede ser cortada completamente por una partícula cuando ésta tiene un diámetro mínimo. En caso de corte debido al impacto de partículas, una amarra en sí misma, podría ser un riesgo para otros satélites en funcionamiento. Por desgracia, tras varias demostraciones en órbita, no se ha podido concluir que este problema sea importante para el funcionamiento del sistema. En esta tesis, se presenta un análisis teórico de la capacidad de supervivencia de las amarras en el espacio. Este estudio demuestra las ventajas de las amarras de sección rectangular (cinta), en cuanto a la probabilidad de supervivencia durante la misión, frente a las amarras convencionales (cables de sección circular). Debido a su particular geometría (longitud mucho mayor que la sección transversal), una amarra puede tener un riesgo relativamente alto de ser cortado por un único impacto con una partícula de pequeñas dimensiones. Un cálculo analítico de la tasa de impactos fatales para una amarra cilindrica y de tipo cinta de igual longitud y masa, considerando el flujo de partículas de basura espacial del modelo ORDEM2000 de la NASA, muestra mayor probabilidad de supervivencia para las cintas. Dicho análisis ha sido comparado con un cálculo numérico empleando los modelos de flujo el ORDEM2000 y el MASTER2005 de ESA. Además se muestra que, para igual tiempo en órbita, una cinta tiene una probabilidad de supervivencia un orden y medio de magnitud mayor que una amarra cilindrica con igual masa y longitud. Por otra parte, de-orbitar una cinta desde una cierta altitud, es mucho más rápido, debido a su mayor perímetro que le permite capturar más corriente. Este es un factor adicional que incrementa la probabilidad de supervivencia de la cinta, al estar menos tiempo expuesta a los posibles impactos de basura espacial. Por este motivo, se puede afirmar finalmente y en sentido práctico, que la capacidad de supervivencia de la cinta es bastante alta, en comparación con la de la amarra cilindrica. El segundo objetivo de este trabajo, consiste en la elaboración de un modelo analítico, mejorando la aproximación del flujo de ORDEM2000 y MASTER2009, que permite calcular con precisión, la tasa de impacto fatal al año para una cinta en un rango de altitudes e inclinaciones, en lugar de unas condiciones particulares. Se obtiene el numero de corte por un cierto tiempo en función de la geometría de la cinta y propiedades de la órbita. Para las mismas condiciones, el modelo analítico, se compara con los resultados obtenidos del análisis numérico. Este modelo escalable ha sido esencial para la optimización del diseño de la amarra para las misiones de de-orbitado de los satélites, variando la masa del satélite y la altitud inicial de la órbita. El modelo de supervivencia se ha utilizado para construir una función objetivo con el fin de optimizar el diseño de amarras. La función objectivo es el producto del cociente entre la masa de la amarra y la del satélite y el numero de corte por un cierto tiempo. Combinando el modelo de supervivencia con una ecuación dinámica de la amarra donde aparece la fuerza de Lorentz, se elimina el tiempo y se escribe la función objetivo como función de la geometría de la cinta y las propietades de la órbita. Este modelo de optimización, condujo al desarrollo de un software, que esta en proceso de registro por parte de la UPM. La etapa final de este estudio, consiste en la estimación del número de impactos fatales, en una cinta, utilizando por primera vez una ecuación de límite balístico experimental. Esta ecuación ha sido desarollada para cintas, y permite representar los efectos tanto de la velocidad de impacto como el ángulo de impacto. Los resultados obtenidos demuestran que la cinta es altamente resistente a los impactos de basura espacial, y para una cinta con una sección transversal definida, el número de impactos críticos debidos a partículas no rastreables es significativamente menor. ABSTRACT The current space environment, consisting of man-made debris and tiny meteoroids, poses a risk to safe operations in space, and the situation is continuously deteriorating due to in-orbit debris collisions and to new satellite launches. Among these debris a significant portion is due to dead satellites and fragments of satellites resulted from explosions and in-orbit collisions. Mitigation of space debris has become an issue of first concern for all the institutions involved in space operations. Bare electrodynamic tethers (EDT) can provide an efficient mechanism for rapid de-orbiting of defunct satellites from low Earth orbit (LEO) at end of life. The research on EDT has been a fruitful field since the 70’s. Thanks to both theoretical studies and in orbit demonstration missions, this technology has been developed very fast in the following decades. During this period, several technical issues were identified and overcome. The core functionality of EDT system greatly depends on their survivability to the micrometeoroids and orbital debris, and a tether can become itself a kind of debris for other operating satellites in case of cutoff due to particle impact; however, this very issue is still inconclusive and conflicting after having a number of space demonstrations. A tether can be completely cut by debris having some minimal diameter. This thesis presents a theoretical analysis of the survivability of tethers in space. The study demonstrates the advantages of tape tethers over conventional round wires particularly on the survivability during the mission. Because of its particular geometry (length very much larger than cross-sectional dimensions), a tether may have a relatively high risk of being severed by the single impact of small debris. As a first approach to the problem, survival probability has been compared for a round and a tape tether of equal mass and length. The rates of fatal impact of orbital debris on round and tape tether, evaluated with an analytical approximation to debris flux modeled by NASA’s ORDEM2000, shows much higher survival probability for tapes. A comparative numerical analysis using debris flux model ORDEM2000 and ESA’s MASTER2005 shows good agreement with the analytical result. It also shows that, for a given time in orbit, a tape has a probability of survival of about one and a half orders of magnitude higher than a round tether of equal mass and length. Because de-orbiting from a given altitude is much faster for the tape due to its larger perimeter, its probability of survival in a practical sense is quite high. As the next step, an analytical model derived in this work allows to calculate accurately the fatal impact rate per year for a tape tether. The model uses power laws for debris-size ranges, in both ORDEM2000 and MASTER2009 debris flux models, to calculate tape tether survivability at different LEO altitudes. The analytical model, which depends on tape dimensions (width, thickness) and orbital parameters (inclinations, altitudes) is then compared with fully numerical results for different orbit inclinations, altitudes and tape width for both ORDEM2000 and MASTER2009 flux data. This scalable model not only estimates the fatal impact count but has proved essential in optimizing tether design for satellite de-orbit missions varying satellite mass and initial orbital altitude and inclination. Within the frame of this dissertation, a simple analysis has been finally presented, showing the scalable property of tape tether, thanks to the survivability model developed, that allows analyze and compare de-orbit performance for a large range of satellite mass and orbit properties. The work explicitly shows the product of tether-to-satellite mass-ratio and fatal impact count as a function of tether geometry and orbital parameters. Combining the tether dynamic equation involving Lorentz drag with space debris impact survivability model, eliminates time from the expression. Hence the product, is independent of tether de-orbit history and just depends on mission constraints and tether length, width and thickness. This optimization model finally led to the development of a friendly software tool named BETsMA, currently in process of registration by UPM. For the final step, an estimation of fatal impact rate on a tape tether has been done, using for the first time an experimental ballistic limit equation that was derived for tapes and accounts for the effects of both the impact velocity and impact angle. It is shown that tape tethers are highly resistant to space debris impacts and considering a tape tether with a defined cross section, the number of critical events due to impact with non-trackable debris is always significantly low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4+ and NO3−) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3−-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to determine the yield and composition of the essential oil of cornmint (Mentha arvensis L.) grown in the irrigation area of Santiago del Estero, Argentina. Field tests were carried out under irrigation conditions, harvesting when 70% flowering was reached (in the summer and at the end of the winter seasons). Essential oil yields were 2% in the first cut and 1.6% in the second cut, respectively, the major constituents of the essential oil being menthol, menthone, isomenthone and menthofuran. In both cases, a high concentration of menthol was obtained, although during the winter the content decreased, increasing the concentration of menthofuran. It is concluded that during the summer a higher yield and better quality of essential oil are produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current research aims to analyse theoretically and evaluate a self-manufactured simple design for subsurface drip irrigation (SDI) emitter to avoid root and soil intrusion. It was composed of three concentric cylindrical elements: an elastic silicone membrane; a polyethylene tube with two holes drilled on its wall for water discharge; and a vinyl polychloride protector system to wrap the other elements. The discharge of the emitter depends on the change in the membrane diameter when it is deformed by the water pressure. The study of the operation of this emitter is a new approach that considers mechanical and hydraulic principles. Thus, the estimation on the membrane deformation was based on classical mechanical stress theories in composite cylinders. The hydraulic principles considered the solid deformation due to force based on water pressure and the general Darcy–Weisbach head-loss equation. Twenty emitter units, with the selected design, were handcrafted in a lathe and were used in this study. The measured pressure/discharge relationship for the emitters showed good agreement with that calculated by the theoretical approach. The variation coefficient of the handcrafted emitters was high compared to commercial emitters. Results from field evaluations showed variable values for the relative flow variation, water emission uniformity and relative flow rate coefficients, but no emitter was obstructed. Therefore, the current emitter design could be suitable for SDI following further studies to develop a final prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conference program will cover all areas of environmental and resource economics, ranging from topics prevailing in the general debate, such as climate change, energy sources, water management and ecosystem services evaluation, to more specialized subjects such as biodiversity conservation or persistent organic pollutants. The congress will be held on the Faculty of Economics of the University of Girona, located in Montilivi, a city quarter situated just few minutes from the city center, conveniently connected by bus lines L8 and L11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout history, humans have cyclically return to their old traditions such as the organic orchards. Nowadays, these have been integrated into the modern cities and could supply fresh vegetables to the daily food improving human health. Organic orchards grow crops without pesticides and artificial fertilizers thus, they are respectful with the environment and guarantee the food's safety . In modern society, the application of new technology is a must, in this case to obtain an efficient irrigation. In order to monitor a proper irrigation and save water and energy, soil water content probes are used to measure soil water content. Among them, capacitive probes ,monitored with a specific data logger, are typically used. Most of them, specially the data loggers, are expensive and in many cases are not used. In this work, we have applied the open hardware Arduino to build and program a low cost datalogger for the programming of irrigation in an experimental organic orchard. Results showed that the application of such as low cost technology, which is easily available in the market and easy to understand, everyone can built and program its own device helping in managing water resources in organic orchards .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se muestra los resultados de un studio con modelos de goteros enterrados donde se observa un efecto de autoreegulación del efecto de sobrepresión del agua en el suelo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In pressure irrigation-water distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions.