32 resultados para High performance concrete
Resumo:
The postprocessing or secret-key distillation process in quantum key distribution (QKD) mainly involves two well-known procedures: information reconciliation and privacy amplification. Information or key reconciliation has been customarily studied in terms of efficiency. During this, some information needs to be disclosed for reconciling discrepancies in the exchanged keys. The leakage of information is lower bounded by a theoretical limit, and is usually parameterized by the reconciliation efficiency (or inefficiency), i.e. the ratio of additional information disclosed over the Shannon limit. Most techniques for reconciling errors in QKD try to optimize this parameter. For instance, the well-known Cascade (probably the most widely used procedure for reconciling errors in QKD) was recently shown to have an average efficiency of 1.05 at the cost of a high interactivity (number of exchanged messages). Modern coding techniques, such as rate-adaptive low-density parity-check (LDPC) codes were also shown to achieve similar efficiency values exchanging only one message, or even better values with few interactivity and shorter block-length codes.
Resumo:
Esta tesis doctoral se enmarca dentro del campo de los sistemas embebidos reconfigurables, redes de sensores inalámbricas para aplicaciones de altas prestaciones, y computación distribuida. El documento se centra en el estudio de alternativas de procesamiento para sistemas embebidos autónomos distribuidos de altas prestaciones (por sus siglas en inglés, High-Performance Autonomous Distributed Systems (HPADS)), así como su evolución hacia el procesamiento de alta resolución. El estudio se ha llevado a cabo tanto a nivel de plataforma como a nivel de las arquitecturas de procesamiento dentro de la plataforma con el objetivo de optimizar aspectos tan relevantes como la eficiencia energética, la capacidad de cómputo y la tolerancia a fallos del sistema. Los HPADS son sistemas realimentados, normalmente formados por elementos distribuidos conectados o no en red, con cierta capacidad de adaptación, y con inteligencia suficiente para llevar a cabo labores de prognosis y/o autoevaluación. Esta clase de sistemas suele formar parte de sistemas más complejos llamados sistemas ciber-físicos (por sus siglas en inglés, Cyber-Physical Systems (CPSs)). Los CPSs cubren un espectro enorme de aplicaciones, yendo desde aplicaciones médicas, fabricación, o aplicaciones aeroespaciales, entre otras muchas. Para el diseño de este tipo de sistemas, aspectos tales como la confiabilidad, la definición de modelos de computación, o el uso de metodologías y/o herramientas que faciliten el incremento de la escalabilidad y de la gestión de la complejidad, son fundamentales. La primera parte de esta tesis doctoral se centra en el estudio de aquellas plataformas existentes en el estado del arte que por sus características pueden ser aplicables en el campo de los CPSs, así como en la propuesta de un nuevo diseño de plataforma de altas prestaciones que se ajuste mejor a los nuevos y más exigentes requisitos de las nuevas aplicaciones. Esta primera parte incluye descripción, implementación y validación de la plataforma propuesta, así como conclusiones sobre su usabilidad y sus limitaciones. Los principales objetivos para el diseño de la plataforma propuesta se enumeran a continuación: • Estudiar la viabilidad del uso de una FPGA basada en RAM como principal procesador de la plataforma en cuanto a consumo energético y capacidad de cómputo. • Propuesta de técnicas de gestión del consumo de energía en cada etapa del perfil de trabajo de la plataforma. •Propuestas para la inclusión de reconfiguración dinámica y parcial de la FPGA (por sus siglas en inglés, Dynamic Partial Reconfiguration (DPR)) de forma que sea posible cambiar ciertas partes del sistema en tiempo de ejecución y sin necesidad de interrumpir al resto de las partes. Evaluar su aplicabilidad en el caso de HPADS. Las nuevas aplicaciones y nuevos escenarios a los que se enfrentan los CPSs, imponen nuevos requisitos en cuanto al ancho de banda necesario para el procesamiento de los datos, así como en la adquisición y comunicación de los mismos, además de un claro incremento en la complejidad de los algoritmos empleados. Para poder cumplir con estos nuevos requisitos, las plataformas están migrando desde sistemas tradicionales uni-procesador de 8 bits, a sistemas híbridos hardware-software que incluyen varios procesadores, o varios procesadores y lógica programable. Entre estas nuevas arquitecturas, las FPGAs y los sistemas en chip (por sus siglas en inglés, System on Chip (SoC)) que incluyen procesadores embebidos y lógica programable, proporcionan soluciones con muy buenos resultados en cuanto a consumo energético, precio, capacidad de cómputo y flexibilidad. Estos buenos resultados son aún mejores cuando las aplicaciones tienen altos requisitos de cómputo y cuando las condiciones de trabajo son muy susceptibles de cambiar en tiempo real. La plataforma propuesta en esta tesis doctoral se ha denominado HiReCookie. La arquitectura incluye una FPGA basada en RAM como único procesador, así como un diseño compatible con la plataforma para redes de sensores inalámbricas desarrollada en el Centro de Electrónica Industrial de la Universidad Politécnica de Madrid (CEI-UPM) conocida como Cookies. Esta FPGA, modelo Spartan-6 LX150, era, en el momento de inicio de este trabajo, la mejor opción en cuanto a consumo y cantidad de recursos integrados, cuando además, permite el uso de reconfiguración dinámica y parcial. Es importante resaltar que aunque los valores de consumo son los mínimos para esta familia de componentes, la potencia instantánea consumida sigue siendo muy alta para aquellos sistemas que han de trabajar distribuidos, de forma autónoma, y en la mayoría de los casos alimentados por baterías. Por esta razón, es necesario incluir en el diseño estrategias de ahorro energético para incrementar la usabilidad y el tiempo de vida de la plataforma. La primera estrategia implementada consiste en dividir la plataforma en distintas islas de alimentación de forma que sólo aquellos elementos que sean estrictamente necesarios permanecerán alimentados, cuando el resto puede estar completamente apagado. De esta forma es posible combinar distintos modos de operación y así optimizar enormemente el consumo de energía. El hecho de apagar la FPGA para ahora energía durante los periodos de inactividad, supone la pérdida de la configuración, puesto que la memoria de configuración es una memoria volátil. Para reducir el impacto en el consumo y en el tiempo que supone la reconfiguración total de la plataforma una vez encendida, en este trabajo, se incluye una técnica para la compresión del archivo de configuración de la FPGA, de forma que se consiga una reducción del tiempo de configuración y por ende de la energía consumida. Aunque varios de los requisitos de diseño pueden satisfacerse con el diseño de la plataforma HiReCookie, es necesario seguir optimizando diversos parámetros tales como el consumo energético, la tolerancia a fallos y la capacidad de procesamiento. Esto sólo es posible explotando todas las posibilidades ofrecidas por la arquitectura de procesamiento en la FPGA. Por lo tanto, la segunda parte de esta tesis doctoral está centrada en el diseño de una arquitectura reconfigurable denominada ARTICo3 (Arquitectura Reconfigurable para el Tratamiento Inteligente de Cómputo, Confiabilidad y Consumo de energía) para la mejora de estos parámetros por medio de un uso dinámico de recursos. ARTICo3 es una arquitectura de procesamiento para FPGAs basadas en RAM, con comunicación tipo bus, preparada para dar soporte para la gestión dinámica de los recursos internos de la FPGA en tiempo de ejecución gracias a la inclusión de reconfiguración dinámica y parcial. Gracias a esta capacidad de reconfiguración parcial, es posible adaptar los niveles de capacidad de procesamiento, energía consumida o tolerancia a fallos para responder a las demandas de la aplicación, entorno, o métricas internas del dispositivo mediante la adaptación del número de recursos asignados para cada tarea. Durante esta segunda parte de la tesis se detallan el diseño de la arquitectura, su implementación en la plataforma HiReCookie, así como en otra familia de FPGAs, y su validación por medio de diferentes pruebas y demostraciones. Los principales objetivos que se plantean la arquitectura son los siguientes: • Proponer una metodología basada en un enfoque multi-hilo, como las propuestas por CUDA (por sus siglas en inglés, Compute Unified Device Architecture) u Open CL, en la cual distintos kernels, o unidades de ejecución, se ejecuten en un numero variable de aceleradores hardware sin necesidad de cambios en el código de aplicación. • Proponer un diseño y proporcionar una arquitectura en la que las condiciones de trabajo cambien de forma dinámica dependiendo bien de parámetros externos o bien de parámetros que indiquen el estado de la plataforma. Estos cambios en el punto de trabajo de la arquitectura serán posibles gracias a la reconfiguración dinámica y parcial de aceleradores hardware en tiempo real. • Explotar las posibilidades de procesamiento concurrente, incluso en una arquitectura basada en bus, por medio de la optimización de las transacciones en ráfaga de datos hacia los aceleradores. •Aprovechar las ventajas ofrecidas por la aceleración lograda por módulos puramente hardware para conseguir una mejor eficiencia energética. • Ser capaces de cambiar los niveles de redundancia de hardware de forma dinámica según las necesidades del sistema en tiempo real y sin cambios para el código de aplicación. • Proponer una capa de abstracción entre el código de aplicación y el uso dinámico de los recursos de la FPGA. El diseño en FPGAs permite la utilización de módulos hardware específicamente creados para una aplicación concreta. De esta forma es posible obtener rendimientos mucho mayores que en el caso de las arquitecturas de propósito general. Además, algunas FPGAs permiten la reconfiguración dinámica y parcial de ciertas partes de su lógica en tiempo de ejecución, lo cual dota al diseño de una gran flexibilidad. Los fabricantes de FPGAs ofrecen arquitecturas predefinidas con la posibilidad de añadir bloques prediseñados y poder formar sistemas en chip de una forma más o menos directa. Sin embargo, la forma en la que estos módulos hardware están organizados dentro de la arquitectura interna ya sea estática o dinámicamente, o la forma en la que la información se intercambia entre ellos, influye enormemente en la capacidad de cómputo y eficiencia energética del sistema. De la misma forma, la capacidad de cargar módulos hardware bajo demanda, permite añadir bloques redundantes que permitan aumentar el nivel de tolerancia a fallos de los sistemas. Sin embargo, la complejidad ligada al diseño de bloques hardware dedicados no debe ser subestimada. Es necesario tener en cuenta que el diseño de un bloque hardware no es sólo su propio diseño, sino también el diseño de sus interfaces, y en algunos casos de los drivers software para su manejo. Además, al añadir más bloques, el espacio de diseño se hace más complejo, y su programación más difícil. Aunque la mayoría de los fabricantes ofrecen interfaces predefinidas, IPs (por sus siglas en inglés, Intelectual Property) comerciales y plantillas para ayudar al diseño de los sistemas, para ser capaces de explotar las posibilidades reales del sistema, es necesario construir arquitecturas sobre las ya establecidas para facilitar el uso del paralelismo, la redundancia, y proporcionar un entorno que soporte la gestión dinámica de los recursos. Para proporcionar este tipo de soporte, ARTICo3 trabaja con un espacio de soluciones formado por tres ejes fundamentales: computación, consumo energético y confiabilidad. De esta forma, cada punto de trabajo se obtiene como una solución de compromiso entre estos tres parámetros. Mediante el uso de la reconfiguración dinámica y parcial y una mejora en la transmisión de los datos entre la memoria principal y los aceleradores, es posible dedicar un número variable de recursos en el tiempo para cada tarea, lo que hace que los recursos internos de la FPGA sean virtualmente ilimitados. Este variación en el tiempo del número de recursos por tarea se puede usar bien para incrementar el nivel de paralelismo, y por ende de aceleración, o bien para aumentar la redundancia, y por lo tanto el nivel de tolerancia a fallos. Al mismo tiempo, usar un numero óptimo de recursos para una tarea mejora el consumo energético ya que bien es posible disminuir la potencia instantánea consumida, o bien el tiempo de procesamiento. Con el objetivo de mantener los niveles de complejidad dentro de unos límites lógicos, es importante que los cambios realizados en el hardware sean totalmente transparentes para el código de aplicación. A este respecto, se incluyen distintos niveles de transparencia: • Transparencia a la escalabilidad: los recursos usados por una misma tarea pueden ser modificados sin que el código de aplicación sufra ningún cambio. • Transparencia al rendimiento: el sistema aumentara su rendimiento cuando la carga de trabajo aumente, sin cambios en el código de aplicación. • Transparencia a la replicación: es posible usar múltiples instancias de un mismo módulo bien para añadir redundancia o bien para incrementar la capacidad de procesamiento. Todo ello sin que el código de aplicación cambie. • Transparencia a la posición: la posición física de los módulos hardware es arbitraria para su direccionamiento desde el código de aplicación. • Transparencia a los fallos: si existe un fallo en un módulo hardware, gracias a la redundancia, el código de aplicación tomará directamente el resultado correcto. • Transparencia a la concurrencia: el hecho de que una tarea sea realizada por más o menos bloques es transparente para el código que la invoca. Por lo tanto, esta tesis doctoral contribuye en dos líneas diferentes. En primer lugar, con el diseño de la plataforma HiReCookie y en segundo lugar con el diseño de la arquitectura ARTICo3. Las principales contribuciones de esta tesis se resumen a continuación. • Arquitectura de la HiReCookie incluyendo: o Compatibilidad con la plataforma Cookies para incrementar las capacidades de esta. o División de la arquitectura en distintas islas de alimentación. o Implementación de los diversos modos de bajo consumo y políticas de despertado del nodo. o Creación de un archivo de configuración de la FPGA comprimido para reducir el tiempo y el consumo de la configuración inicial. • Diseño de la arquitectura reconfigurable para FPGAs basadas en RAM ARTICo3: o Modelo de computación y modos de ejecución inspirados en el modelo de CUDA pero basados en hardware reconfigurable con un número variable de bloques de hilos por cada unidad de ejecución. o Estructura para optimizar las transacciones de datos en ráfaga proporcionando datos en cascada o en paralelo a los distinto módulos incluyendo un proceso de votado por mayoría y operaciones de reducción. o Capa de abstracción entre el procesador principal que incluye el código de aplicación y los recursos asignados para las diferentes tareas. o Arquitectura de los módulos hardware reconfigurables para mantener la escalabilidad añadiendo una la interfaz para las nuevas funcionalidades con un simple acceso a una memoria RAM interna. o Caracterización online de las tareas para proporcionar información a un módulo de gestión de recursos para mejorar la operación en términos de energía y procesamiento cuando además se opera entre distintos nieles de tolerancia a fallos. El documento está dividido en dos partes principales formando un total de cinco capítulos. En primer lugar, después de motivar la necesidad de nuevas plataformas para cubrir las nuevas aplicaciones, se detalla el diseño de la plataforma HiReCookie, sus partes, las posibilidades para bajar el consumo energético y se muestran casos de uso de la plataforma así como pruebas de validación del diseño. La segunda parte del documento describe la arquitectura reconfigurable, su implementación en varias FPGAs, y pruebas de validación en términos de capacidad de procesamiento y consumo energético, incluyendo cómo estos aspectos se ven afectados por el nivel de tolerancia a fallos elegido. Los capítulos a lo largo del documento son los siguientes: El capítulo 1 analiza los principales objetivos, motivación y aspectos teóricos necesarios para seguir el resto del documento. El capítulo 2 está centrado en el diseño de la plataforma HiReCookie y sus posibilidades para disminuir el consumo de energía. El capítulo 3 describe la arquitectura reconfigurable ARTICo3. El capítulo 4 se centra en las pruebas de validación de la arquitectura usando la plataforma HiReCookie para la mayoría de los tests. Un ejemplo de aplicación es mostrado para analizar el funcionamiento de la arquitectura. El capítulo 5 concluye esta tesis doctoral comentando las conclusiones obtenidas, las contribuciones originales del trabajo y resultados y líneas futuras. ABSTRACT This PhD Thesis is framed within the field of dynamically reconfigurable embedded systems, advanced sensor networks and distributed computing. The document is centred on the study of processing solutions for high-performance autonomous distributed systems (HPADS) as well as their evolution towards High performance Computing (HPC) systems. The approach of the study is focused on both platform and processor levels to optimise critical aspects such as computing performance, energy efficiency and fault tolerance. HPADS are considered feedback systems, normally networked and/or distributed, with real-time adaptive and predictive functionality. These systems, as part of more complex systems known as Cyber-Physical Systems (CPSs), can be applied in a wide range of fields such as military, health care, manufacturing, aerospace, etc. For the design of HPADS, high levels of dependability, the definition of suitable models of computation, and the use of methodologies and tools to support scalability and complexity management, are required. The first part of the document studies the different possibilities at platform design level in the state of the art, together with description, development and validation tests of the platform proposed in this work to cope with the previously mentioned requirements. The main objectives targeted by this platform design are the following: • Study the feasibility of using SRAM-based FPGAs as the main processor of the platform in terms of energy consumption and performance for high demanding applications. • Analyse and propose energy management techniques to reduce energy consumption in every stage of the working profile of the platform. • Provide a solution with dynamic partial and wireless remote HW reconfiguration (DPR) to be able to change certain parts of the FPGA design at run time and on demand without interrupting the rest of the system. • Demonstrate the applicability of the platform in different test-bench applications. In order to select the best approach for the platform design in terms of processing alternatives, a study of the evolution of the state-of-the-art platforms is required to analyse how different architectures cope with new more demanding applications and scenarios: security, mixed-critical systems for aerospace, multimedia applications, or military environments, among others. In all these scenarios, important changes in the required processing bandwidth or the complexity of the algorithms used are provoking the migration of the platforms from single microprocessor architectures to multiprocessing and heterogeneous solutions with more instant power consumption but higher energy efficiency. Within these solutions, FPGAs and Systems on Chip including FPGA fabric and dedicated hard processors, offer a good trade of among flexibility, processing performance, energy consumption and price, when they are used in demanding applications where working conditions are very likely to vary over time and high complex algorithms are required. The platform architecture proposed in this PhD Thesis is called HiReCookie. It includes an SRAM-based FPGA as the main and only processing unit. The FPGA selected, the Xilinx Spartan-6 LX150, was at the beginning of this work the best choice in terms of amount of resources and power. Although, the power levels are the lowest of these kind of devices, they can be still very high for distributed systems that normally work powered by batteries. For that reason, it is necessary to include different energy saving possibilities to increase the usability of the platform. In order to reduce energy consumption, the platform architecture is divided into different power islands so that only those parts of the systems that are strictly needed are powered on, while the rest of the islands can be completely switched off. This allows a combination of different low power modes to decrease energy. In addition, one of the most important handicaps of SRAM-based FPGAs is that they are not alive at power up. Therefore, recovering the system from a switch-off state requires to reload the FPGA configuration from a non-volatile memory device. For that reason, this PhD Thesis also proposes a methodology to compress the FPGA configuration file in order to reduce time and energy during the initial configuration process. Although some of the requirements for the design of HPADS are already covered by the design of the HiReCookie platform, it is necessary to continue improving energy efficiency, computing performance and fault tolerance. This is only possible by exploiting all the opportunities provided by the processing architectures configured inside the FPGA. Therefore, the second part of the thesis details the design of the so called ARTICo3 FPGA architecture to enhance the already intrinsic capabilities of the FPGA. ARTICo3 is a DPR-capable bus-based virtual architecture for multiple HW acceleration in SRAM-based FPGAs. The architecture provides support for dynamic resource management in real time. In this way, by using DPR, it will be possible to change the levels of computing performance, energy consumption and fault tolerance on demand by increasing or decreasing the amount of resources used by the different tasks. Apart from the detailed design of the architecture and its implementation in different FPGA devices, different validation tests and comparisons are also shown. The main objectives targeted by this FPGA architecture are listed as follows: • Provide a method based on a multithread approach such as those offered by CUDA (Compute Unified Device Architecture) or OpenCL kernel executions, where kernels are executed in a variable number of HW accelerators without requiring application code changes. • Provide an architecture to dynamically adapt working points according to either self-measured or external parameters in terms of energy consumption, fault tolerance and computing performance. Taking advantage of DPR capabilities, the architecture must provide support for a dynamic use of resources in real time. • Exploit concurrent processing capabilities in a standard bus-based system by optimizing data transactions to and from HW accelerators. • Measure the advantage of HW acceleration as a technique to boost performance to improve processing times and save energy by reducing active times for distributed embedded systems. • Dynamically change the levels of HW redundancy to adapt fault tolerance in real time. • Provide HW abstraction from SW application design. FPGAs give the possibility of designing specific HW blocks for every required task to optimise performance while some of them include the possibility of including DPR. Apart from the possibilities provided by manufacturers, the way these HW modules are organised, addressed and multiplexed in area and time can improve computing performance and energy consumption. At the same time, fault tolerance and security techniques can also be dynamically included using DPR. However, the inherent complexity of designing new HW modules for every application is not negligible. It does not only consist of the HW description, but also the design of drivers and interfaces with the rest of the system, while the design space is widened and more complex to define and program. Even though the tools provided by the majority of manufacturers already include predefined bus interfaces, commercial IPs, and templates to ease application prototyping, it is necessary to improve these capabilities. By adding new architectures on top of them, it is possible to take advantage of parallelization and HW redundancy while providing a framework to ease the use of dynamic resource management. ARTICo3 works within a solution space where working points change at run time in a 3D space defined by three different axes: Computation, Consumption, and Fault Tolerance. Therefore, every working point is found as a trade-off solution among these three axes. By means of DPR, different accelerators can be multiplexed so that the amount of available resources for any application is virtually unlimited. Taking advantage of DPR capabilities and a novel way of transmitting data to the reconfigurable HW accelerators, it is possible to dedicate a dynamically-changing number of resources for a given task in order to either boost computing speed or adding HW redundancy and a voting process to increase fault-tolerance levels. At the same time, using an optimised amount of resources for a given task reduces energy consumption by reducing instant power or computing time. In order to keep level complexity under certain limits, it is important that HW changes are transparent for the application code. Therefore, different levels of transparency are targeted by the system: • Scalability transparency: a task must be able to expand its resources without changing the system structure or application algorithms. • Performance transparency: the system must reconfigure itself as load changes. • Replication transparency: multiple instances of the same task are loaded to increase reliability and performance. • Location transparency: resources are accessed with no knowledge of their location by the application code. • Failure transparency: task must be completed despite a failure in some components. • Concurrency transparency: different tasks will work in a concurrent way transparent to the application code. Therefore, as it can be seen, the Thesis is contributing in two different ways. First with the design of the HiReCookie platform and, second with the design of the ARTICo3 architecture. The main contributions of this PhD Thesis are then listed below: • Architecture of the HiReCookie platform including: o Compatibility of the processing layer for high performance applications with the Cookies Wireless Sensor Network platform for fast prototyping and implementation. o A division of the architecture in power islands. o All the different low-power modes. o The creation of the partial-initial bitstream together with the wake-up policies of the node. • The design of the reconfigurable architecture for SRAM FPGAs: ARTICo3: o A model of computation and execution modes inspired in CUDA but based on reconfigurable HW with a dynamic number of thread blocks per kernel. o A structure to optimise burst data transactions providing coalesced or parallel data to HW accelerators, parallel voting process and reduction operation. o The abstraction provided to the host processor with respect to the operation of the kernels in terms of the number of replicas, modes of operation, location in the reconfigurable area and addressing. o The architecture of the modules representing the thread blocks to make the system scalable by adding functional units only adding an access to a BRAM port. o The online characterization of the kernels to provide information to a scheduler or resource manager in terms of energy consumption and processing time when changing among different fault-tolerance levels, as well as if a kernel is expected to work in the memory-bounded or computing-bounded areas. The document of the Thesis is divided into two main parts with a total of five chapters. First, after motivating the need for new platforms to cover new more demanding applications, the design of the HiReCookie platform, its parts and several partial tests are detailed. The design of the platform alone does not cover all the needs of these applications. Therefore, the second part describes the architecture inside the FPGA, called ARTICo3, proposed in this PhD Thesis. The architecture and its implementation are tested in terms of energy consumption and computing performance showing different possibilities to improve fault tolerance and how this impact in energy and time of processing. Chapter 1 shows the main goals of this PhD Thesis and the technology background required to follow the rest of the document. Chapter 2 shows all the details about the design of the FPGA-based platform HiReCookie. Chapter 3 describes the ARTICo3 architecture. Chapter 4 is focused on the validation tests of the ARTICo3 architecture. An application for proof of concept is explained where typical kernels related to image processing and encryption algorithms are used. Further experimental analyses are performed using these kernels. Chapter 5 concludes the document analysing conclusions, comments about the contributions of the work, and some possible future lines for the work.
Resumo:
Las estructuras que trabajan por forma se caracterizan por la íntima e indisociable relación entre geometría y comportamiento estructural. Por consiguiente, la elección de una apropiada geometría es el paso previo indispensable en el diseño conceptual de dichas estructuras. En esa tarea, la selección de las posibles geometrías antifuniculares para las distribuciones de cargas permanentes más habituales son más bien limitadas y, muchas veces, son criterios no estructurales (adaptabilidad funcional, estética, proceso constructivo, etc.) los que no permiten la utilización de dichas geometrías que garantizarían el máximo aprovechamiento del material. En este contexto, esta tesis estudia la posibilidad de obtener una estructura sin momentos flectores incluso si la geometría no es antifunicular para sus cargas permanentes. En efecto, esta tesis presenta un procedimiento, basado en la estática gráfica, que demuestra cómo un conjunto de cargas adicionales, introducidas a través de un sistema de pretensado exterior con elementos post-tesos, puede eliminar los momentos flectores debidos a cargas permanentes en cualquier geometría plana. Esto se traduce en una estructura antifunicular que proporciona respuestas innovadoras a demandas conjuntas de versatilidad arquitectónica y optimización del material. Dicha metodología gráfica ha sido implementada en un software distribuido libremente (EXOEQUILIBRIUM), donde el análisis estructural y la variación geométrica están incluidos en el mismo entorno interactivo y paramétrico. La utilización de estas herramientas permite más versatilidad en la búsqueda de nuevas formas eficientes, lo cual tiene gran importancia en el diseño conceptual de estructuras, liberando al ingeniero de la limitación del propio cálculo y de la incomprensión del comportamiento estructural, facilitando extraordinariamente el hecho creativo a la luz de una metodología de este estilo. Esta tesis incluye la aplicación de estos procedimientos a estructuras de cualquier geometría y distribución inicial de cargas, así como el estudio de diferentes posibles criterios de diseño para optimizar la posición del sistema de post-tesado. Además, la metodología ha sido empleada en el proyecto de maquetas a escala reducida y en la construcción de un pabellón hecho enteramente de cartón, lo que ha permitido obtener una validación física del procedimiento desarrollado. En definitiva, esta tesis expande de manera relevante el rango de posibles geometrías antifuniculares y abre enormes posibilidades para el diseño de estructuras que combinan eficiencia estructural y flexibilidad arquitectónica.Curved structures are characterized by the critical relationship between their geometry and structural behaviour, and selecting an appropriate shape in the conceptual design of such structures is important for achieving materialefficiency. However, the set of bending-free geometries are limited and, often, non-structural design criteria (e.g., usability, architectural needs, aesthetics) prohibit the selection of purely funicular or antifunicular shapes. In response to this issue, this thesis studies the possibility of achieving an axial-only behaviour even if the geometry departs from the ideally bending-free shape. This dissertation presents a new design approach, based on graphic statics that shows how bending moments in a two-dimensional geometry can be eliminated by adding forces through an external post-tensioning system. This results in bending-free structures that provide innovative answers to combined demands on versatility and material optimization. The graphical procedure has been implemented in a free-downloadable design-driven software (EXOEQUILIBRIUM) where structural performance evaluations and geometric variation are embedded within an interactive and parametric working environment. This provides greater versatility in finding new efficient structural configurations during the first design stages, bridging the gap between architectural shaping and structural analysis. The thesis includes the application of the developed graphical procedure to shapes with random curvature and distribution of loads. Furthermore, the effect of different design criteria on the internal force distribution has been analyzed. Finally, the construction of reduced- and large-scale models provides further physical validation of the method and insights about the structural behaviour of these structures. In summary, this work strongly expands the range of possible forms that exhibit a bending-free behaviour and, de facto, opens up new possibilities for designs that combine high-performing solutions with architectural freedom.
Resumo:
In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which is suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si. The lifetime in the remainder of HPMC-Si material is found to be limited by grain-boundary recombination. To reduce the recombination activity of grain boundaries in HPMC-Si, coordinated impurity control during growth, gettering, and passivation must be developed.
Resumo:
El hormigón autocompactante (HAC) es una nueva tipología de hormigón o material compuesto base cemento que se caracteriza por ser capaz de fluir en el interior del encofrado o molde, llenándolo de forma natural, pasando entre las barras de armadura y consolidándose únicamente bajo la acción de su peso propio, sin ayuda de medios de compactación externos, y sin que se produzca segregación de sus componentes. Debido a sus propiedades frescas (capacidad de relleno, capacidad de paso, y resistencia a la segregación), el HAC contribuye de forma significativa a mejorar la calidad de las estructuras así como a abrir nuevos campos de aplicación del hormigón. Por otra parte, la utilidad del hormigón reforzado con fibras de acero (HRFA) es hoy en día incuestionable debido a la mejora significativa de sus propiedades mecánicas tales como resistencia a tracción, tenacidad, resistencia al impacto o su capacidad para absorber energía. Comparado con el HRFA, el hormigón autocompactante reforzado con fibras de acero (HACRFA) presenta como ventaja una mayor fluidez y cohesión ofreciendo, además de unas buenas propiedades mecánicas, importantes ventajas en relación con su puesta en obra. El objetivo global de esta tesis doctoral es el desarrollo de nuevas soluciones estructurales utilizando materiales compuestos base cemento autocompactantes reforzados con fibras de acero. La tesis presenta una nueva forma de resolver el problema basándose en el concepto de los materiales gradiente funcionales (MGF) o materiales con función gradiente (MFG) con el fin de distribuir de forma eficiente las fibras en la sección estructural. Para ello, parte del HAC se sustituye por HACRFA formando capas que presentan una transición gradual entre las mismas con el fin de obtener secciones robustas y exentas de tensiones entre capas con el fin de aplicar el concepto “MGF-laminados” a elementos estructurales tales como vigas, columnas, losas, etc. El proceso incluye asimismo el propio método de fabricación que, basado en la tecnología HAC, permite el desarrollo de interfases delgadas y robustas entre capas (1-3 mm) gracias a las propiedades reológicas del material. Para alcanzar dichos objetivos se ha llevado a cabo un amplio programa experimental cuyas etapas principales son las siguientes: • Definir y desarrollar un método de diseño que permita caracterizar de forma adecuada las propiedades mecánicas de la “interfase”. Esta primera fase experimental incluye: o las consideraciones generales del propio método de fabricación basado en el concepto de fabricación de materiales gradiente funcionales denominado “reología y gravedad”, o las consideraciones específicas del método de caracterización, o la caracterización de la “interfase”. • Estudiar el comportamiento mecánico sobre elementos estructurales, utilizando distintas configuraciones de MGF-laminado frente a acciones tanto estáticas como dinámicas con el fin de comprobar la viabilidad del material para ser usado en elementos estructurales tales como vigas, placas, pilares, etc. Los resultados indican la viabilidad de la metodología de fabricación adoptada, así como, las ventajas tanto estructurales como en reducción de costes de las soluciones laminadas propuestas. Es importante destacar la mejora en términos de resistencia a flexión, compresión o impacto del hormigón autocompactante gradiente funcional en comparación con soluciones de HACRFA monolíticos inclusos con un volumen neto de fibras (Vf) doble o superior. Self-compacting concrete (SCC) is an important advance in the concrete technology in the last decades. It is a new type of high performance concrete with the ability of flowing under its own weight and without the need of vibrations. Due to its specific fresh or rheological properties, such as filling ability, passing ability and segregation resistance, SCC may contribute to a significant improvement of the quality of concrete structures and open up new field for the application of concrete. On the other hand, the usefulness of steel fibre-reinforced concrete (SFRC) in civil engineering applications is unquestionable. SFRC can improve significantly the hardened mechanical properties such as tensile strength, impact resistance, toughness and energy absorption capacity. Compared to SFRC, self-compacting steel fibre-reinforced concrete (SCSFRC) is a relatively new type of concrete with high flowability and good cohesiveness. SCSFRC offers very attractive economical and technical benefits thanks to SCC rheological properties, which can be further extended, when combined with SFRC for improving their mechanical characteristics. However, for the different concrete structural elements, a single concrete mix is selected without an attempt to adapt the diverse fibre-reinforced concretes to the stress-strain sectional properly. This thesis focused on the development of high performance cement-based structural composites made of SCC with and without steel fibres, and their applications for enhanced mechanical properties in front of different types of load and pattern configurations. It presents a new direction for tackling the mechanical problem. The approach adopted is based on the concept of functionally graded cementitious composite (FGCC) where part of the plain SCC is strategically replaced by SCSFRC in order to obtain laminated functionally graded self-compacting cementitious composites, laminated-FGSCC, in single structural elements as beams, columns, slabs, etc. The approach also involves a most suitable casting method, which uses SCC technology to eliminate the potential sharp interlayer while easily forming a robust and regular reproducible graded interlayer of 1-3 mm by controlling the rheology of the mixes and using gravity at the same time to encourage the use of the powerful concept for designing more performance suitable and cost-efficient structural systems. To reach the challenging aim, a wide experimental programme has been carried out involving two main steps: • The definition and development of a novel methodology designed for the characterization of the main parameter associated to the interface- or laminated-FGSCC solutions: the graded interlayer. Work of this first part includes: o the design considerations of the innovative (in the field of concrete) production method based on “rheology and gravity” for producing FG-SCSFRC or as named in the thesis FGSCC, casting process and elements, o the design of a specific testing methodology, o the characterization of the interface-FGSCC by using the so designed testing methodology. • The characterization of the different medium size FGSCC samples under different static and dynamic loads patterns for exploring their possibilities to be used for structural elements as beams, columns, slabs, etc. The results revealed the efficiency of the manufacturing methodology, which allow creating robust structural sections, as well as the feasibility and cost effectiveness of the proposed FGSCC solutions for different structural uses. It is noticeable to say the improvement in terms of flexural, compressive or impact loads’ responses of the different FGSCC in front of equal strength class SCSFRC bulk elements with at least the double of overall net fibre volume fraction (Vf).
Resumo:
This article examines, from the energy viewpoint, a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs for use in architectural projects. The research was based on envelope components already existing on the market, especially components implemented with granular silica gel insulation, as this is the most effective translucent thermal insulation there is today. The tests run on these materials revealed that there is not one that has all the features required of the new envelope model, although some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of vacuum insulated panels (VIP), the monolithic aerogel used as insulation in some prototypes, reinforced polyester barriers. By combining these three design components — the high-performance thermal insulation of the vacuum chamber combined with monolithic silica gel insulation, the free-form design potential provided by materials like reinforced polyester and epoxy resins—, we have been able to define and test a new, variable geometry, energy-saving envelope system.
Resumo:
This paper summarizes the research activities focused on the behaviour of concrete and concrete structures subjected to blast loading carried out by the Department of Materials Science of the Technical University of Madrid (PUM). These activities comprise the design and construction of a test bench that allows for testing up to four planar concrete specimens with one single explosion, the study of the performance of different protection concepts for concrete structures and, finally, the development of a numerical model for the simulation of concrete structural elements subjected to blast. Up to date 6 different types of concrete have been studied, from plain normal strength concrete, to high strength concrete, including also fibre reinforced concretes with different types of fibres. The numerical model is based on the Cohesive Crack Model approach, and has been developed for the LSDYNA finite element code through a user programmed subroutine. Despite its simplicity, the model is able to predict the failure patterns of the concrete slabs tested with a high level of accuracy
Resumo:
Over the past few years, polyolefin fiber reinforced self-compacting concrete has shown high performance in both fresh and hardened state. Its fracture behavior for small deformations could be enhanced with a small amount of steel-hooked fibers, obtaining a hybrid fiber-reinforced concrete well suited for structural use. Four types of conventional fiber-reinforced concrete with steel and polyolefin fibers were produced on the basis of the same self-compacting concrete also manufactured as reference. These concrete mixtures were manufactured separately with the same fiber contents being subsequently used for two more hybrid mixtures. Fracture properties, in addition to fresh and mechanical properties, were assessed. The research showed both synergies (with the two types of fibers working together in the fracture processes) and an improvement of the orientation and distribution of the fibers on the fracture surface
Resumo:
La fisuración iniciada en la superficie de los pavimentos asfálticos constituye uno de los más frecuentes e importantes modos de deterioro que tienen lugar en los firmes bituminosos, como han demostrado los estudios teóricos y experimentales llevados a cabo en la última década. Sin embargo, este mecanismo de fallo no ha sido considerado por los métodos tradicionales de diseño de estos firmes. El concepto de firmes de larga duración se fundamenta en un adecuado seguimiento del proceso de avance en profundidad de estos deterioros y la intervención en el momento más apropiado para conseguir mantenerlos confinados como fisuras de profundidad parcial en la capa superficial más fácilmente accesible y reparable, de manera que pueda prolongarse la durabilidad y funcionalidad del firme y reducir los costes generalizados de su ciclo de vida. Por lo tanto, para la selección de la estrategia óptima de conservación de los firmes resulta esencial disponer de metodologías que posibiliten la identificación precisa in situ de la fisuración descendente, su seguimiento y control, y que además permitan una determinación fiable y con alto rendimiento de su profundidad y extensión. En esta Tesis Doctoral se presentan los resultados obtenidos mediante la investigación sistemática de laboratorio e in situ llevada a cabo para la obtención de datos sobre fisuración descendente en firmes asfálticos y para el estudio de procedimientos de evaluación de la profundidad de este tipo de fisuras empleando técnicas de ultrasonidos. Dichos resultados han permitido comprobar que la metodología no destructiva propuesta, de rápida ejecución, bajo coste y sencilla implementación (principalmente empleada hasta el momento en estructuras metálicas y de hormigón, debido a las dificultades que introduce la naturaleza viscoelástica de los materiales bituminosos) puede ser aplicada con suficiente fiabilidad y repetibilidad sobre firmes asfálticos. Las medidas resultan asimismo independientes del espesor total del firme. Además, permite resolver algunos de los inconvenientes frecuentes que presentan otros métodos de diagnóstico de las fisuras de pavimentos, tales como la extracción de testigos (sistema destructivo, de alto coste y prolongados tiempos de interrupción del tráfico) o algunas otras técnicas no destructivas como las basadas en medidas de deflexiones o el georradar, las cuales no resultan suficientemente precisas para la investigación de fisuras superficiales. Para ello se han realizado varias campañas de ensayos sobre probetas de laboratorio en las que se han estudiado diferentes condiciones empíricas como, por ejemplo, distintos tipos de mezclas bituminosas en caliente (AC, SMA y PA), espesores de firme y adherencias entre capas, temperaturas, texturas superficiales, materiales de relleno y agua en el interior de las grietas, posición de los sensores y un amplio rango de posibles profundidades de fisura. Los métodos empleados se basan en la realización de varias medidas de velocidad o de tiempo de transmisión del pulso ultrasónico sobre una única cara o superficie accesible del material, de manera que resulte posible obtener un coeficiente de transmisión de la señal (mediciones relativas o autocompensadas). Las mediciones se han realizado a bajas frecuencias de excitación mediante dos equipos de ultrasonidos diferentes dotados, en un caso, de transductores de contacto puntual seco (DPC) y siendo en el otro instrumento de contacto plano a través de un material especialmente seleccionado para el acoplamiento (CPC). Ello ha permitido superar algunos de los tradicionales inconvenientes que presenta el uso de los transductores convencionales y no precisar preparación previa de las superficies. La técnica de autocalibración empleada elimina los errores sistemáticos y la necesidad de una calibración local previa, demostrando el potencial de esta tecnología. Los resultados experimentales han sido comparados con modelos teóricos simplificados que simulan la propagación de las ondas ultrasónicas en estos materiales bituminosos fisurados, los cuales han sido deducidos previamente mediante un planteamiento analítico y han permitido la correcta interpretación de dichos datos empíricos. Posteriormente, estos modelos se han calibrado mediante los resultados de laboratorio, proporcionándose sus expresiones matemáticas generalizadas y gráficas para su uso rutinario en las aplicaciones prácticas. Mediante los ensayos con ultrasonidos efectuados en campañas llevadas a cabo in situ, acompañados de la extracción de testigos del firme, se han podido evaluar los modelos propuestos. El máximo error relativo promedio en la estimación de la profundidad de las fisuras al aplicar dichos modelos no ha superado el 13%, con un nivel de confianza del 95%, en el conjunto de todos los ensayos realizados. La comprobación in situ de los modelos ha permitido establecer los criterios y las necesarias recomendaciones para su utilización sobre firmes en servicio. La experiencia obtenida posibilita la integración de esta metodología entre las técnicas de auscultación para la gestión de su conservación. Abstract Surface-initiated cracking of asphalt pavements constitutes one of the most frequent and important types of distress that occur in flexible bituminous pavements, as clearly has been demonstrated in the technical and experimental studies done over the past decade. However, this failure mechanism has not been taken into consideration for traditional methods of flexible pavement design. The concept of long-lasting pavements is based on adequate monitoring of the depth and extent of these deteriorations and on intervention at the most appropriate moment so as to contain them in the surface layer in the form of easily-accessible and repairable partial-depth topdown cracks, thereby prolonging the durability and serviceability of the pavement and reducing the overall cost of its life cycle. Therefore, to select the optimal maintenance strategy for perpetual pavements, it becomes essential to have access to methodologies that enable precise on-site identification, monitoring and control of top-down propagated cracks and that also permit a reliable, high-performance determination of the extent and depth of cracking. This PhD Thesis presents the results of systematic laboratory and in situ research carried out to obtain information about top-down cracking in asphalt pavements and to study methods of depth evaluation of this type of cracking using ultrasonic techniques. These results have demonstrated that the proposed non-destructive methodology –cost-effective, fast and easy-to-implement– (mainly used to date for concrete and metal structures, due to the difficulties caused by the viscoelastic nature of bituminous materials) can be applied with sufficient reliability and repeatability to asphalt pavements. Measurements are also independent of the asphalt thickness. Furthermore, it resolves some of the common inconveniences presented by other methods used to evaluate pavement cracking, such as core extraction (a destructive and expensive procedure that requires prolonged traffic interruptions) and other non-destructive techniques, such as those based on deflection measurements or ground-penetrating radar, which are not sufficiently precise to measure surface cracks. To obtain these results, extensive tests were performed on laboratory specimens. Different empirical conditions were studied, such as various types of hot bituminous mixtures (AC, SMA and PA), differing thicknesses of asphalt and adhesions between layers, varied temperatures, surface textures, filling materials and water within the crack, different sensor positions, as well as an ample range of possible crack depths. The methods employed in the study are based on a series of measurements of ultrasonic pulse velocities or transmission times over a single accessible side or surface of the material that make it possible to obtain a signal transmission coefficient (relative or auto-calibrated readings). Measurements were taken at low frequencies by two short-pulse ultrasonic devices: one equipped with dry point contact transducers (DPC) and the other with flat contact transducers that require a specially-selected coupling material (CPC). In this way, some of the traditional inconveniences presented by the use of conventional transducers were overcome and a prior preparation of the surfaces was not required. The auto-compensating technique eliminated systematic errors and the need for previous local calibration, demonstrating the potential for this technology. The experimental results have been compared with simplified theoretical models that simulate ultrasonic wave propagation in cracked bituminous materials, which had been previously deduced using an analytical approach and have permitted the correct interpretation of the aforementioned empirical results. These models were subsequently calibrated using the laboratory results, providing generalized mathematical expressions and graphics for routine use in practical applications. Through a series of on-site ultrasound test campaigns, accompanied by asphalt core extraction, it was possible to evaluate the proposed models, with differences between predicted crack depths and those measured in situ lower than 13% (with a confidence level of 95%). Thereby, the criteria and the necessary recommendations for their implementation on in-service asphalt pavements have been established. The experience obtained through this study makes it possible to integrate this methodology into the evaluation techniques for pavement management systems.
Resumo:
Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.
Resumo:
Durante los últimos años el flujo de datos en la transmisión que tiene lugar en los sistemas de comunicación ha aumentado considerablemente de forma que día a día se requieren más aplicaciones trabajando en un rango de frecuencias muy alto (3-30 GHz). Muchos de estos sistemas de comunicación incluyen dispositivos de onda acústica superficial (SAW) y por tanto se hace necesario el aumento de frecuencia a la que éstos trabajan. Pero este incremento de frecuencia de los dispositivos SAW no sólo es utilizado en los sistemas de comunicación, varios tipos de sensores, por ejemplo, aumentan su sensibilidad cuando la frecuencia a la que trabajan también lo hace. Tradicionalmente los dispositivos SAW se han fabricado sobre cuarzo, LiNbO3 y LiTaO3 principalmente. Sin embargo la principal limitación de estos materiales es su velocidad SAW. Además, debido a la alta temperatura a la que se depositan no pueden ser integrados en la tecnología de fabricación CMOS. El uso de la tecnología de capa delgada, en la que un material piezoeléctrico es depositado sobre un substrato, se está utilizando en las últimas décadas para incrementar la velocidad SAW de la estructura y poder obtener dispositivos trabajando en el rango de frecuencias requerido en la actualidad. Por otra parte, esta tecnología podría ser integrada en el proceso de fabricación CMOS. Durante esta tesis nos hemos centrado en la fabricación de dispositivos SAW trabajando a muy alta frecuencia. Para ello, utilizando la tecnología de capa delgada, hemos utilizado la estructura nitruro de aluminio (AlN) sobre diamante que permite conseguir velocidades SAW del sustrato que no se pueden alcanzar con otros materiales. El depósito de AlN se realizó mediante sputtering reactivo. Durante esta tesis se han realizado diferentes experimentos para optimizar dicho depósito de forma que se han obtenido los parámetros óptimos para los cuales se pueden obtener capas de AlN de alta calidad sobre cualquier tipo de sustrato. Además todo el proceso se realizó a baja temperatura para que el procesado de estos dispositivos pueda ser compatible con la tecnología CMOS. Una vez optimizada la estructura AlN/diamante, mediante litografía por haz de electrones se fabricaron resonadores SAW de tamaño nanométrico que sumado a la alta velocidad resultante de la combinación AlN/diamante nos ha permitido obtener dispositivos trabajando en el rango de 10-28 GHz con un alto factor de calidad y rechazo fuera de la banda. Estás frecuencias y prestaciones no han sido alcanzadas por el momento en resonadores de este tipo. Por otra parte, se han utilizado estos dispositivos para fabricar sensores de presión de alta sensibilidad. Estos dispositivos son afectados altamente por los cambios de temperatura. Se realizó también un exhaustivo estudio de cómo se comportan en temperatura estos resonadores, entre -250ºC y 250ºC (rango de temperaturas no estudiado hasta el momento) diferenciándose dos regiones una a muy baja temperatura en la que el dispositivo muestra un coeficiente de retraso en frecuencia (TCF) relativamente bajo y otra a partir de los -100ºC en la que el TCF es similar al observado en la bibliografía. Por tanto, durante esta tesis se ha optimizado el depósito de AlN sobre diamante para que sea compatible con la tecnología CMOS y permita el procesado de dispositivos trabajando a muy alta frecuencia con altas prestaciones para comunicaciones y sensores. ABSTRACT The increasing volume of information in data transmission systems results in a growing demand of applications working in the super-high-frequency band (3–30 GHz). Most of these systems work with surface acoustic wave (SAW) devices and thus there is a necessity of increasing their resonance frequency. Moreover, sensor application includes this kind of devices. The sensitivity of them is proportional with its frequency. Traditionally, quartz, LiNbO3 and LiTaO3 have been used in the fabrication of SAW devices. These materials suffer from a variety of limitations and in particular they have low SAW velocity as well as being incompatible with the CMOS technology. In order to overcome these problems, thin film technology, where a piezoelectric material is deposited on top of a substrate, has been used during the last decades. The piezoelectric/substrate structure allows to reach the frequencies required nowadays and could be compatible with the mass electronic production CMOS technology. This thesis work focuses on the fabrication of SAW devices working in the super-high-frequency range. Thin film technology has been used in order to get it, especially aluminum nitride (AlN) deposited by reactive sputtering on diamond has been used to increase the SAW velocity. Different experiments were carried out to optimize the parameters for the deposit of high quality AlN on any kind of substrates. In addition, the system was optimized under low temperature and thus this process is CMOS compatible. Once the AlN/diamond was optimized, thanks to the used e-beam lithography, nanometric SAW resonators were fabricated. The combination of the structure and the size of the devices allow the fabrication of devices working in the range of 10-28 GHz with a high quality factor and out of band rejection. These high performances and frequencies have not been reached so far for this kind of devices. Moreover, these devices have been used as high sensitivity pressure sensors. They are affected by temperature changes and thus a wide temperature range (-250ºC to 250ºC) study was done. From this study two regions were observed. At very low temperature, the temperature coefficient of frequency (TCF) is low. From -100ºC upwards the TCF is similar to the one appearing in the literature. Therefore, during this thesis work, the sputtering of AlN on diamond substrates was optimized for the CMOS compatible fabrication of high frequency and high performance SAW devices for communication and sensor application.
Resumo:
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Resumo:
This paper presents a high performance system of regulation and stabilization of luminous flux for public street lighting installations. Its purpose is to reduce the luminous flux of the luminaries efficiently by reducing their voltage supply, resulting in the improvement of energy efficiency in the installation. The system is basically composed of electromagnetic components which provide robustness and high-performance to the device, as well as minimum maintenance requirements. However, the voltage regulation is based on the application of voltage steps. Aging studies of the luminaries have been carried out to analyze the impact of this discrete voltage regulation. A specific prototype of this voltage and stabilizer regulator have been in operation in a real outdoor lighting installation for more than one year.
Resumo:
This letter describes the procedure to manufacture high-performance surface acoustic wave (SAW) resonators on AlN/diamond heterostructures working at frequencies beyond 10 GHz. In the design of SAW devices on AlN/diamond systems, the thickness of the piezoelectric layer is a key parameter. The influence of the film thickness on the SAW device response has been studied. Optimized thin films combined with advanced e-beam lithographic techniques have allowed the fabrication of one-port SAW resonators with finger width and pitch of 200 nm operating in the 10–14 GHz range with up to 36 dB out-of-band rejection.
Resumo:
Tiny increases in the transmittance of optical materials within a CPV module can have an important impact on the economy of a plant. This is certainly true in systems comprising multi-junction solar cells, whose high performance, based on a balanced photocurrent generation among the series-connected junctions, is very sensitive to spectrum variations. Every efficiency point gained causes not only an increase in the kilowatts hour produced, but a higher benefit on it, since the difference between electricity tariff and Levelized Cost of Electricity (LCOE) rises. This work studies the impact on the LCOE of a plant based on modules comprising PMMA lenses of two different types, standard UV blocking grade which is normally used for outdoor applications at high DNI climate and a specialty stabilized UV-enhanced transmittance acrylic (see Figure 1). Energy production will be compared for these two systems throughout the year at different sites to analyze when (season, time of the day) and where the usage of the enhanced PMMA is justified.