42 resultados para HIGH-ELECTRON


Relevância:

60.00% 60.00%

Publicador:

Resumo:

GaN based high electron mobility transistors have draw great attention due to its potential in high temperature, high power and high frequency applications [1, 2]. However, significant gate leakage current is still one of the issues which need to be solved to improve the performance and reliability of the devices [3]. Several research groups have contributed to solve this problem by using metal–oxide–semiconductor HEMTs (MOSHEMTs), with a thin dielectric layer, such as SiO2 [4], Al2O3 [5], HfO2 [6] and Gd2O3 [7] between the gate and the barrier layer on AlGaN/GaN heterostructures. Gd2O3 has shown low interfacial density of states(Dit) with GaN and a high dielectric constant and low electrical leakage currents [8], thus is considered as a promising candidate for the gate dielectrics on GaN. MOS-HEMTs using Gd2O3 grown by electron-beam heating [7] or molecular beam epitaxy (MBE) [8] on GaN or AlGan/GaN structure have been investigated, but further research is still needed in Gd2O3 based AlGaN/GaN MOSHEMTs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K� yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of � 8 � 1010 A=cm2 they reach 1:5 keV=�m and 0:8 keV=�m, respectively. For higher current densities up to 1012 A=cm2, numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV=�m for electron current densities of 1014 A=cm2, representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the successful implementation of a record performing dual-junction solar cell at ultra high concentration, in this paper we present the transition to a triple-junction device. The semiconductor structure of the solar cells is presented and the main changes in respect to a dual-junction design are briefly discussed. Cross-sectional TEM analysis of samples confirms that the quality of the triple-junction structures grown by MOVPE is good, revealing no trace of antiphase disorder, and showing flat, sharp and clear interfaces between the layers. Triple-junction solar cells manufactured on these structures have shown a peak efficiency of 36.2% at 700X, maintaining the efficiency over 35% from 300 to 1200 suns. With some changes in the structure and a fine tuning of its processing, efficiencies close to 40% at 1000 suns are envisaged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on properties of high quality ~60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be +/- 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AlN/diamond structure is an attractive combination for SAW devices and its application at high frequencies. In this work, the synthesis of AlN thin films by reactive sputtering has been optimized on diamond substrates in order to process high frequency devices. Polished microcrystalline and as-grown nanocrystalline diamond substrates have been used to deposit AlN of different thickness under equal sputtering conditions. For the smoother substrates, the FWHM of the rocking curve of the (002) AlN peak varies from 3.8° to 2.7° with increasing power. SAW one port resonators have been fabricated on these films, whose electrical characterization (in terms of S11 parameters) is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoscale Al/SiC composite laminates have unique properties, such as high strength, high toughness, and damage tolerance. In this article, the high-temperature nanoindentation response of Al/SiC nanolaminates is explored from room temperature up to 300_C. Selected nanoindentations were analyzed postmortem using focused ion beam and transmission electron microscopy to ascertain the microstructural changes and the deformation mechanisms operating at high temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical study of the relativistic interaction of a linearly-polarized laser-field of w frequency with highly overdense plasma is presented. Very intense high harmonics are generated produced by relativistic mirrors effects due to the relativistic electron plasma oscillation. Also, in agreement with 1D Particle-In-Cell Simulations (PICS), the model self-consistently explains the transition between the sheath inverse bremsstrahlung (SIB) absorption regime and the J×B heating (responsible for the 2w electron bunches), as well as the mean electron energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence efficiency of GaAsSb-capped InAs/GaAs type II quantum dots (QDs) can be greatly enhanced by rapid thermal annealing while preserving long radiative lifetimes which are ∼20 times larger than in standard GaAs-capped InAs/GaAs QDs. Despite the reduced electron-hole wavefunction overlap, the type-II samples are more efficient than the type-I counterparts in terms of luminescence, showing a great potential for device applications. Strain-driven In-Ga intermixing during annealing is found to modify the QD shape and composition, while As-Sb exchange is inhibited, allowing to keep the type-II structure. Sb is only redistributed within the capping layer giving rise to a more homogeneous composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrostatic plasma waves excited by a uniform, alternating electric field of arbitrary intensity are studied on the basis of the Vlasov equation; their dispersion relation, which involves the determinant of either of two infinite matrices, is derived. For ω0 ≫ ωpi (ω0 being the applied frequency and ωpi the ion plasma frequency) the waves may be classified in two groups, each satisfying a simple condition; this allows writing the dispersion relation in closed form. Both groups coalesce (resonance) if (a) ω0  ≈  ωpe/r (r any integer) and (b) the wavenumber k is small. A nonoscillatory instability is found; its distinction from the DuBois‐Goldman instability and its physical origin are discussed. Conditions for its excitation (in particular, upper limits to ω0,k, and k⋅vE,vE being the field‐induced electron velocity), and simple equations for the growth rate are given off‐resonance and at ω0  ≈  ωpi. The dependence of both threshold and maximum growth rate on various parameters is discussed, and the results are compared with those of Silin and Nishikawa. The threshold at ω0  ≈  ωpi/r,r  ≠  1, is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single, nonlocal expression for the electron heat flux, which closely reproduces known results at high and low ion charge number 2, and “exact” results for the local limit at all 2, is derived by solving the kinetic equation in a narrow, tail-energy range. The solution involves asymptotic expansions of Bessel functions of large argument, and (Z-dependent)order above or below it, corresponding to the possible parabolic or hyperbolic character of the kinetic equation; velocity space diffusion in self-scattering is treated similarly to isotropic thermalization of tail energies in large Z analyses. The scale length H characterizing nonlocal effects varies with Z, suggesting an equal dependence of any ad hoc flux limiter. The model is valid for all H above the mean-free path for thermal electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter describes the procedure to manufacture high-performance surface acoustic wave (SAW) resonators on AlN/diamond heterostructures working at frequencies beyond 10 GHz. In the design of SAW devices on AlN/diamond systems, the thickness of the piezoelectric layer is a key parameter. The influence of the film thickness on the SAW device response has been studied. Optimized thin films combined with advanced e-beam lithographic techniques have allowed the fabrication of one-port SAW resonators with finger width and pitch of 200 nm operating in the 10–14 GHz range with up to 36 dB out-of-band rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of the electrostatic plasma instabilities excited by the application of a strong, uniform, alternating electric field is made on the basis of the Vlasov equation. A very general dispersion relation is obtained and discussed. Under the assumption W 2 O » C 2 pi. (where wO is the applied frequency and wpi the ion plasma frequency) a detailed analysis is given for wavelengths of the order of or large compared with the Debye length. It is found that there are two types of instabilities: resonant (or parametric) and nonresonant. The second is caused by the relative streaming of ions and electrons, generated by the field; it seems to exist only if wO is less than the electron plasma frequency wpe. The instability only appears if the field exceeds a certain threshold, which is found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrically floating metallic bare tether in a low Earth orbit would be highly negative with respect to the ambient plasma over most of its length, and would be bombarded by ambient ions. This would liberate secondary electrons, which, after acceleration through the same voltage, would form a magnetically guided two-sided planar e-beam. Upon impact on the atmospheric E-layer, at about 120-140 Km altitude auroral effects (ionization and light emission) can be expected. This paper examines in a preliminary way the feasibility of using this effect as an upper atmospheric probe. It is concluded that significant perturbations can be produced along the illuminated planar sheet of the atmosphere, with ionization rates of several thousand cm-3 sec1. Observation of the induced optical emission is made difficult by the narrowness and high moving speed of the illuminated zone, but it is shown that vertical resolution of single spectral lines is possible, as is wider spectral coverage with no vertical resolution.