46 resultados para Fresnel diffration
Resumo:
Tiny increases in the transmittance of optical materials within a CPV module can have an important impact on the economy of a plant. This is certainly true in systems comprising multi-junction solar cells, whose high performance, based on a balanced photocurrent generation among the series-connected junctions, is very sensitive to spectrum variations. Every efficiency point gained causes not only an increase in the kilowatts hour produced, but a higher benefit on it, since the difference between electricity tariff and Levelized Cost of Electricity (LCOE) rises. This work studies the impact on the LCOE of a plant based on modules comprising PMMA lenses of two different types, standard UV blocking grade which is normally used for outdoor applications at high DNI climate and a specialty stabilized UV-enhanced transmittance acrylic (see Figure 1). Energy production will be compared for these two systems throughout the year at different sites to analyze when (season, time of the day) and where the usage of the enhanced PMMA is justified.
Resumo:
Se presenta una metodología eficiente de diseño de reflectores de zonas de Fresnel (FZP). A las ventajas del bajo coste de estos reflectores se le añade la posibilidad de construir reflectores reconfigurables capaces de adaptarse a las características de radiación exigidas en diferentes aplicaciones, como las de superficies sin eco o invisibles a radares.
Resumo:
A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.
Resumo:
Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. The spectral irradiance distributions are especially affected with thermal effects on Silicone-on-Glass (SoG) CPV systems. This work presents a new CPV optical design, the 9-fold Fresnel Köhler concentrator, prepared to overcome these effects at high concentrations while maintaining a large acceptance angle, paving the way for a future generation of high efficiency CPV systems of 4 and 5 junction cells.
Resumo:
Non-uniform irradiance patterns created by Concentrated Photovoltaics (CPV) concentrators over Multi-Junction Cells (MJC) can originate significant power losses, especially when there are different spectral irradiance distributions over the different MJC junctions. This fact has an increased importance considering the recent advances in 4 and 5 junction cells. This work presents a new CPV optical design, the 9-fold Fresnel Köhler concentrator, prepared to overcome these effects at high concentrations while maintaining a large acceptance angle, paving the way for a future generation of high efficiency CPV systems of 4 and 5 junction cells.
Resumo:
Linear Fresnel collectors still present a large margin to improve efficiency. Solar fields of this kind installed until current time, both prototypes and commercial plants, are designed with widths and shifts of mirrors that are constant across the solar field. However, the physical processes that limit the width of the mirrors depend on their relative locations to the receiver; the same applies to shading and blocking effects, that oblige to have a minimum shift between mirrors. In this work such phenomena are studied analytically in order to obtain a coherent design, able to improve the efficiency with no increase in cost. A ray tracing simulation along one year has been carried out for a given design, obtaining a moderate increase in radiation collecting efficiency in comparison to conventional designs. Moreover, this analytic theory can guide future designs aiming at fully optimizing linear Fresnel collectors' performance.
Resumo:
Energía termosolar (de concentración) es uno de los nombres que hacen referencia en español al término inglés “concentrating solar power”. Se trata de una tecnología basada en la captura de la potencia térmica de la radiación solar, de forma que permita alcanzar temperaturas capaces de alimentar un ciclo termodinámico convencional (o avanzado); el futuro de esta tecnología depende principalmente de su capacidad para concentrar la radiación solar de manera eficiente y económica. La presente tesis está orientada hacia la resolución de ciertos problemas importantes relacionados con este objetivo. La mencionada necesidad de reducir costes en la concentración de radiación solar directa, asegurando el objetivo termodinámico de calentar un fluido hasta una determinada temperatura, es de vital importancia. Los colectores lineales Fresnel han sido identificados en la literatura científica como una tecnología con gran potencial para alcanzar esta reducción de costes. Dicha tecnología ha sido seleccionada por numerosas razones, entre las que destacan su gran libertad de diseño y su actual estado inmaduro. Con el objetivo de responder a este desafío se desarrollado un detallado estudio de las propiedades ópticas de los colectores lineales Fresnel, para lo cual se han utilizado métodos analíticos y numéricos de manera combinada. En primer lugar, se han usado unos modelos para la predicción de la localización y la irradiación normal directa del sol junto a unas relaciones analíticas desarrolladas para estudiar el efecto de múltiples variables de diseño en la energía incidente sobre los espejos. Del mismo modo, se han obtenido analíticamente los errores debidos al llamado “off-axis aberration”, a la apertura de los rayos reflejados en los espejos y a las sombras y bloqueos entre espejos. Esto ha permitido la comparación de diferentes formas de espejo –planos, circulares o parabólicos–, así como el diseño preliminar de la localización y anchura de los espejos y receptor sin necesidad de costosos métodos numéricos. En segundo lugar, se ha desarrollado un modelo de trazado de rayos de Monte Carlo con el objetivo de comprobar la validez del estudio analítico, pero sobre todo porque este no es preciso en el estudio de la reflexión en espejos. El código desarrollado está específicamente ideado para colectores lineales Fresnel, lo que ha permitido la reducción del tiempo de cálculo en varios órdenes de magnitud en comparación con un programa comercial más general. Esto justifica el desarrollo de un nuevo código en lugar de la compra de una licencia de otro programa. El modelo ha sido usado primeramente para comparar la intensidad de flujo térmico y rendimiento de colectores Fresnel, con y sin reflector secundario, con los colectores cilíndrico parabólicos. Finalmente, la conjunción de los resultados obtenidos en el estudio analítico con el programa numérico ha sido usada para optimizar el campo solar para diferentes orientaciones –Norte-Sur y Este-Oeste–, diferentes localizaciones –Almería y Aswan–, diferentes inclinaciones hacia el Trópico –desde 0 deg hasta 32 deg– y diferentes mínimos de intensidad del flujo en el centro del receptor –10 kW/m2 y 25 kW/m2–. La presente tesis ha conducido a importantes descubrimientos que deben ser considerados a la hora de diseñar un campo solar Fresnel. En primer lugar, los espejos utilizados no deben ser plano, sino cilíndricos o parabólicos, ya que los espejos curvos implican mayores concentraciones y rendimiento. Por otro lado, se ha llegado a la conclusión de que la orientación Este-Oeste es más propicia para localizaciones con altas latitudes, como Almería, mientras que en zonas más cercanas a los trópicos como Aswan los campos Norte-Sur conducen a mayores rendimientos. Es de destacar que la orientación Este-Oeste requiere aproximadamente la mitad de espejos que los campos Norte-Sur, puediendo estar inclinados hacia los Trópicos para mejorar el rendimiento, y que alcanzan parecidos valores de intensidad térmica en el receptor todos los días a mediodía. Sin embargo, los campos con orientación Norte-Sur permiten un flujo más constante a lo largo de un día. Por último, ha sido demostrado que el uso de diseños pre-optimizados analíticamente, con anchura de espejos y espaciado entre espejos variables a lo ancho del campo, pueden implicar aumentos de la energía generada por metro cuadrado de espejos de hasta el 6%. El rendimiento óptico anual de los colectores cilíndrico parabólicos es 23 % mayor que el rendimiento de los campos Fresnel en Almería, mientras que la diferencia es de solo 9 % en Aswan. Ello implica que, para alcanzar el mismo precio de electricidad que la tecnología de referencia, la reducción de costes de instalación por metro cuadrado de espejo debe estar entre el 10 % y el 25 %, y que los colectores lineales Fresnel tienen más posibilidades de ser desarrollados en zonas de bajas latitudes. Como consecuencia de los estudios desarrollados en esta tesis se ha patentado un sistema de almacenamiento que tiene en cuenta la variación del flujo térmico en el receptor a lo largo del día, especialmente para campos con orientación Este-Oeste. Este invento permitiría el aprovechamiento de la energía incidente durante más parte del año, aumentando de manera apreciable los rendimientos óptico y térmico. Abstract Concentrating solar power is the common name of a technology based on capturing the thermal power of solar radiation, in a suitable way to reach temperatures able to activate a conventional (or advanced) thermodynamic cycle to generate electricity; this quest mainly depends on our ability to concentrate solar radiation in a cheap and efficient way. The present thesis is focused to highlight and help solving some of the important issues related to this problem. The need of reducing costs in concentrating the direct solar radiation, but without jeopardizing the thermodynamic objective of heating a fluid up to the required temperature, is of prime importance. Linear Fresnel collectors have been identified in the scientific literature as a technology with high potential to reach this cost reduction. This technology has been selected because of a number of reasons, particularly the degrees of freedom of this type of concentrating configuration and its current immature state. In order to respond to this challenge, a very detailed exercise has been carried out on the optical properties of linear Fresnel collectors. This has been done combining analytic and numerical methods. First, the effect of the design variables on the ratio of energy impinging onto the reflecting surface has been studied using analytically developed equations, together with models that predict the location and direct normal irradiance of the sun at any moment. Similarly, errors due to off-axis aberration, to the aperture of the reflected energy beam and to shading and blocking effects have been obtained analytically. This has allowed the comparison of different shapes of mirrors –flat, cylindrical or parabolic–, as well as a preliminary optimization of the location and width of mirrors and receiver with no need of time-consuming numerical models. Second, in order to prove the validity of the analytic results, but also due to the fact that the study of the reflection process is not precise enough when using analytic equations, a Monte Carlo Ray Trace model has been developed. The developed code is designed specifically for linear Fresnel collectors, which has reduced the computing time by several orders of magnitude compared to a wider commercial software. This justifies the development of the new code. The model has been first used to compare radiation flux intensities and efficiencies of linear Fresnel collectors, both multitube receiver and secondary reflector receiver technologies, with parabolic trough collectors. Finally, the results obtained in the analytic study together with the numeric model have used in order to optimize the solar field for different orientations –North-South and East-West–, different locations –Almería and Aswan–, different tilts of the field towards the Tropic –from 0 deg to 32 deg– and different flux intensity minimum requirements –10 kW/m2 and 25 kW/m2. This thesis work has led to several important findings that should be considered in the design of Fresnel solar fields. First, flat mirrors should not be used in any case, as cylindrical and parabolic mirrors lead to higher flux intensities and efficiencies. Second, it has been concluded that, in locations relatively far from the Tropics such as Almería, East-West embodiments are more efficient, while in Aswan North- South orientation leads to a higher annual efficiency. It must be noted that East-West oriented solar fields require approximately half the number of mirrors than NS oriented fields, can be tilted towards the Equator in order to increase the efficiency and attain similar values of flux intensity at the receiver every day at midday. On the other hand, in NS embodiments the flux intensity is more even during each single day. Finally, it has been proved that the use of analytic designs with variable shift between mirrors and variable width of mirrors across the field can lead to improvements in the electricity generated per reflecting surface square meter up to 6%. The annual optical efficiency of parabolic troughs has been found to be 23% higher than the efficiency of Fresnel fields in Almería, but it is only around 9% higher in Aswan. This implies that, in order to attain the same levelized cost of electricity than parabolic troughs, the required reduction of installation costs per mirror square meter is in the range of 10-25%. Also, it is concluded that linear Fresnel collectors are more suitable for low latitude areas. As a consequence of the studies carried out in this thesis, an innovative storage system has been patented. This system takes into account the variation of the flux intensity along the day, especially for East-West oriented solar fields. As a result, the invention would allow to exploit the impinging radiation along longer time every day, increasing appreciably the optical and thermal efficiencies.
Resumo:
Linear Fresnel collector arrays present some relevant advantages in the domain of concentrating solar power because of their simplicity, robustness and low capital cost. However, they also present important drawbacks and limitations, notably their average concentration ratio, which seems to limit significantly the performance of these systems. First, the paper addresses the problem of characterizing the mirror field configuration assuming hourly data of a typical year, in reference to a configuration similar to that of Fresdemo. For a proper comparative study, it is necessary to define a comparison criterion. In that sense, a new variable is defined, the useful energy efficiency, which only accounts for the radiation that impinges on the receiver with intensities above a reference value. As a second step, a comparative study between central linear Fresnel reflectors and compact linear Fresnel reflectors is carried out. This analysis shows that compact linear Fresnel reflectors minimize blocking and shading losses compared to a central configuration. However this minimization is not enough to overcome other negative effects of the compact Fresnel collectors, as the greater dispersion of the rays reaching the receiver, caused by the fact that mirrors must be located farther from the receiver, which yields to lower efficiencies.
Resumo:
Non-uniform irradiance patterns over Multi-Junction Cells gives rise to power losses, especially when considering spectral irradiance distributions over different junctions. Thermal effects on Silicone-on-Glass lenses affect spectral irradiance distributions. A new Photovoltaic Concentrator (CPV), formed by nine optical channels, each one with a Köhler configuration, has been designed to overcome these effects at high concentrations for a large acceptance angle. A Fresnel Lens with a Variable Focal Point is proposed to prevent optical crosstalk in multichannel systems. When integrated into the concentrator, improves the acceptance angle. These designs are designed to fulfill the expected requirements of four junction CPV systems.
Resumo:
Fresnel lenses used as primary optics in concentrating photovoltaic modules may show warping produced by lens manufacturing or module assembly (e.g., stress during molding or weight load) or due to stress during operation (e.g., mismatch of thermal expansion between different materials). To quantify this problem, a simple method called “checkerboard method” is presented. The proposed method identifies shape errors on the front surface of primary lenses by analyzing the Fresnel reflections. This paper also deals with the quantification of the effects these curvatures have on their optical performance and on the electrical performance of concentrating modules incorporating them. This method can be used to perform quality control of Fresnel lenses in scenarios of high volume production.
Resumo:
El proyecto que se va a implementar es el diseño, construcción y puesta en marcha de un instrumento de medida del comportamiento de las lentes de Fresnel a distintas temperaturas. Dicho proyecto se desarrollará en el grupo de Integración de Sistemas e Instrumentos (ISI) del Instituto de Energía Solar. Las lentes de Fresnel se emplean en la tecnología de concentración fotovoltaica (CPV), siendo una parte imprescindible en este campo. La necesidad de este instrumento se justifica ya que al variar la temperatura de estas lentes, estando fabricadas con Silicona Sobre Vidrio (SOG), varía su distancia focal y por ello baja considerablemente la eficiencia de las células de concentración. La parte a implementar físicamente en este proyecto es una cámara térmica en la que se puedan introducir estas lentes primarias con el objetivo de ponerlas a una determinada temperatura. Para poder mantener un rango de temperaturas entre 5ºC y 60ºC se van a utilizar dos módulos peltier. Por lo tanto, es necesario que dicha cámara térmica tenga tanto en la parte frontal como en la trasera, unas ventanas de vidrio de alta transmitancia que permitan el máximo paso de luz, afectando lo menos posible a la medida. El diseño de la cámara térmica incluye unas cámaras en cada pared en las que se introducirá un aislante térmico para minimizar las pérdidas mencionadas anteriormente. Con este objetivo, las ventanas admiten la opción de un doble acristalado, adquiriendo un compromiso entre aislamiento térmico y transmisión de luz. La caja estará formada por tres cámaras, una central en la que se va a colocar la lente que se quiere medir y dos cámaras laterales en las que se van a introducir ambos peltier respectivamente. El objetivo de estas cámaras laterales es que, al estar comunicadas con la central a través de pequeñas rendijas, el aire a una cierta temperatura llegue de la forma más uniforme posible a la lente. En cuanto a la cámara central, tiene varios carriles en los cuales se pondrá la lente que se quiere medir, permitiendo de esta forma medir lentes de distancias focales muy diferentes además de poder fijar con la menor incertidumbre posible la posición de dicha lente. En este proyecto se procederá también a realizar el diseño teórico de una parte móvil posterior en la que habrá una célula de concentración sobre la que se realizarán las medidas.
Resumo:
Linear Fresnel collectors are identified as a technology that should play a main role in order to reduce cost of Concentrating Solar Power. An optical and thermal analysis of the different blocks of the solar power plant is carried out, where Fresnel arrays are compared with the most extended linear technology: parabolic trough collectors. It is demonstrated that the optical performance of Fresnel array is very close to that of PTC, with similar values of maximum flux intensities. In addition, if the heat carrier fluid flows in series by the tubes of the receiver, relatively high thermal efficiencies are achieved. Thus, an annual solar to electricity efficiency of 19% is expected, which is similar to the state of the art in PTCs; this is done with a reduction of costs, thanks to lighter structures, that drives to an estimation of LCOE of around 6.5 c€/kWh.
Resumo:
A set of measurements of electromagnetic properties of building materials is presented in this work. The method is based on the measurement of the polarization state of the reflected signal from the material under study at a fixed angle of incidence. From the measured data, by using the Fresnel equations, it has been obtained the dielectric constant. Measurements were done by using two horn antennas at the frequency of 9 GHz. The obtained results are compared with the free space reflexion and transmission Fresnel method and other reflection methods based on a conductor waveguide. The method explained in this work can be used for other type of materials and its main advantage is the non-destructive character and the ease implementation.
Resumo:
A novel HCPV nonimaging concentrator concept with high concentration (>500×) is presented. It uses the combination of a commercial concentration GaInP∕GaInAs∕Ge 3J cell and a concentration Back‐Point‐Contact (BPC) concentration silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell′s reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free‐form RXI‐type concentrator with a band‐pass filter embedded it, both POE and SOE performing Köhler integration to produce light homogenization. The band‐pass filter sends the IR photons in the 900–1200 nm band to the silicon cell. Computer simulations predict that four‐terminal terminal designs could achieve ∼46% added cell efficiencies using commercial 39% 3J and 26% Si cells. A first proof‐of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ∼ 100× and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J with peak efficiency of 36.9%
Resumo:
The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing∕aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE)