35 resultados para Alternative food systems
Resumo:
Adaptive hardware requires some reconfiguration capabilities. FPGAs with native dynamic partial reconfiguration (DPR) support pose a dilemma for system designers: whether to use native DPR or to build a virtual reconfigurable circuit (VRC) on top of the FPGA which allows selecting alternative functions by a multiplexing scheme. This solution allows much faster reconfiguration, but with higher resource overhead. This paper discusses the advantages of both implementations for a 2D image processing matrix. Results show how higher operating frequency is obtained for the matrix using DPR. However, this is compensated in the VRC during evolution due to the comparatively negligible reconfiguration time. Regarding area, the DPR implementation consumes slightly more resources due to the reconfiguration engine, but adds further more capabilities to the system.
Resumo:
La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.
Resumo:
Due to the fast rate of peach post-harvest ripening, damage due to mechanical handling, externally appreciated as bruises and soft areas, is a real problem that leads to an early harvesting and poor quality of the fruits, as perceived by the consumers. More and more, the European consumer asks for good taste and freshness of fruits and vegetables, and these quality factors are not included in standards, nor in most of the producers' practices. Fruit processing and marketing centres (co-operatives) are increasingly interested in adopting quality controls in their processes. ISO 9000 procedures are being applied in some food areas, primarily milk and meat processors, but no generalised procedures have been developed until the present time to be applied to fresh product processes. All different peach and nectarine varieties that are harvested and handled in Murcia cooperatives and sold in a large supermarket in Madrid were analysed during the whole 1997 season (early May to late August). A total number of 78 samples of 25 fruits (co-operative) or 10 fruits (market), were tested in the laboratory for mechanical, optical, chemical and tasting quality. The variability and relationships between all these quality parameters are presented and discussed, and sampling unit sizes which would be advisable for quality control are calculated.
Resumo:
A novel photovoltaic concentrator enables highly uniform irradiance on a small number of efficient solar cells. The maximum electrical power of a photovoltaic (PV) energy installation depends on three factors: the available irradiance, the size of the systems collecting sunlight, and the rate at which the device transforms light into electricity (the conversion efficiency). Developers can maximize the irradiance by carefully selecting the site and orientation of the solar facility. But they can only expand their sunlight collection systems for standard flat plate PV devices by increasing the number of solar cells, at greater cost. Here, we consider the advantages of an alternative PV system that produces more energy without increasing the number of cells used (actually, reducing it), by improving the conversion rates.We also present a new device that may enhance the commercial viability of such technologies.
Resumo:
The objective of this study was to propose a multi-criteria optimization and decision-making technique to solve food engineering problems. This technique was demostrated using experimental data obtained on osmotic dehydratation of carrot cubes in a sodium chloride solution. The Aggregating Functions Approach, the Adaptive Random Search Algorithm, and the Penalty Functions Approach were used in this study to compute the initial set of non-dominated or Pareto-optimal solutions. Multiple non-linear regression analysis was performed on a set of experimental data in order to obtain particular multi-objective functions (responses), namely water loss, solute gain, rehydration ratio, three different colour criteria of rehydrated product, and sensory evaluation (organoleptic quality). Two multi-criteria decision-making approaches, the Analytic Hierarchy Process (AHP) and the Tabular Method (TM), were used simultaneously to choose the best alternative among the set of non-dominated solutions. The multi-criteria optimization and decision-making technique proposed in this study can facilitate the assessment of criteria weights, giving rise to a fairer, more consistent, and adequate final compromised solution or food process. This technique can be useful to food scientists in research and education, as well as to engineers involved in the improvement of a variety of food engineering processes.
Resumo:
One of humanity’s major challenges of the 21st century will be meeting future food demands on an increasingly resource constrained-planet. Global food production will have to rise by 70 percent between 2000 and 2050 to meet effective demand which poses major challenges to food production systems. Doing so without compromising environmental integrity is an even greater challenge. This study looks at the interdependencies between land and water resources, agricultural production and environmental outcomes in Latin America and the Caribbean (LAC), an area of growing importance in international agricultural markets. Special emphasis is given to the role of LAC’s agriculture for (a) global food security and (b) environmental sustainability. We use the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)—a global dynamic partial equilibrium model of the agricultural sector—to run different future production scenarios, and agricultural trade regimes out to 2050, and assess changes in related environmental indicators. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Finally, our analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths.
Resumo:
Environmental problems related to the use of synthetic fertilizers and to organic waste management have led to increased interest in the use of organic materials as an alternative source of nutrients for crops, but this is also associated with N2O emissions. There has been an increasing amount of research into the effects of using different types of fertilization on N2O emissions under Mediterranean climatic conditions, but the findings have sometimes been rather contradictory. Available information also suggests that water management could exert a high influence on N2O emissions. In this context, we have reviewed the current scientific knowledge, including an analysis of the effect of fertilizer type and water management on direct N2O emissions. A meta-analysis of compliant reviewed experiments revealed significantly lower N2O emissions for organic as opposed to synthetic fertilizers (23% reduction). When organic materials were segregated in solid and liquid, only solid organic fertilizer emissions were significantly lower than those of synthetic fertilizers (28% reduction in cumulative emissions). The EF is similar to the IPCC factor in conventionally irrigated systems (0.98% N2O-N N applied−1), but one order of magnitude lower in rainfed systems (0.08%). Drip irrigation produces intermediate emission levels (0.66%). Differences are driven by Mediterranean agro-climatic characteristics, which include low soil organic matter (SOM) content and a distinctive rainfall and temperature pattern. Interactions between environmental and management factors and the microbial processes involved in N2O emissions are discussed in detail. Indirect emissions have not been fully accounted for, but when organic fertilizers are applied at similar N rates to synthetic fertilizers, they generally make smaller contributions to the leached NO3− pool. The most promising practices for reducing N2O through organic fertilization include: (i) minimizing water applications; (ii) minimizing bare soil; (iii) improving waste management; and (iv) tightening N cycling through N immobilization. The mitigation potential may be limited by: (i) residual effect; (ii) the long-term effects of fertilizers on SOM; (iii) lower yield-scaled performance; and (iv) total N availability from organic sources. Knowledge gaps identified in the review included: (i) insufficient sampling periods; (ii) high background emissions; (iii) the need to provide N2O EF and yield-scaled EF; (iv) the need for more research on specific cropping systems; and (v) the need for full GHG balances. In conclusion, the available information suggests a potential of organic fertilizers and water-saving practices to mitigate N2O emissions under Mediterranean climatic conditions, although further research is needed before it can be regarded as fully proven, understood and developed.
Resumo:
Los modelos de simulación de cultivos permiten analizar varias combinaciones de laboreo-rotación y explorar escenarios de manejo. El modelo DSSAT fue evaluado bajo condiciones de secano en un experimento de campo de 16 años en la semiárida España central. Se evaluó el efecto del sistema de laboreo y las rotaciones basadas en cereales de invierno, en el rendimiento del cultivo y la calidad del suelo. Los modelos CERES y CROPGRO se utilizaron para simular el crecimiento y rendimiento del cultivo, mientras que el modelo DSSAT CENTURY se utilizó en las simulaciones de SOC y SN. Tanto las observaciones de campo como las simulaciones con CERES-Barley, mostraron que el rendimiento en grano de la cebada era mas bajo para el cereal continuo (BB) que para las rotaciones de veza (VB) y barbecho (FB) en ambos sistemas de laboreo. El modelo predijo más nitrógeno disponible en el laboreo convencional (CT) que en el no laboreo (NT) conduciendo a un mayor rendimiento en el CT. El SOC y el SN en la capa superficial del suelo, fueron mayores en NT que en CT, y disminuyeron con la profundidad en los valores tanto observados como simulados. Las mejores combinaciones para las condiciones de secano estudiadas fueron CT-VB y CT-FB, pero CT presentó menor contenido en SN y SOC que NT. El efecto beneficioso del NT en SOC y SN bajo condiciones Mediterráneas semiáridas puede ser identificado por observaciones de campo y por simulaciones de modelos de cultivos. La simulación del balance de agua en sistemas de cultivo es una herramienta útil para estudiar como el agua puede ser utilizado eficientemente. La comparación del balance de agua de DSSAT , con una simple aproximación “tipping bucket”, con el modelo WAVE más mecanicista, el cual integra la ecuación de Richard , es un potente método para valorar el funcionamiento del modelo. Los parámetros de suelo fueron calibrados usando el método de optimización global Simulated Annealing (SA). Un lisímetro continuo de pesada en suelo desnudo suministró los valores observados de drenaje y evapotranspiración (ET) mientras que el contenido de agua en el suelo (SW) fue suministrado por sensores de capacitancia. Ambos modelos funcionaron bien después de la optimización de los parámetros de suelo con SA, simulando el balance de agua en el suelo para el período de calibración. Para el período de validación, los modelos optimizados predijeron bien el contenido de agua en el suelo y la evaporación del suelo a lo largo del tiempo. Sin embargo, el drenaje fue predicho mejor con WAVE que con DSSAT, el cual presentó mayores errores en los valores acumulados. Esto podría ser debido a la naturaleza mecanicista de WAVE frente a la naturaleza más funcional de DSSAT. Los buenos resultados de WAVE indican que, después de la calibración, este puede ser utilizado como "benchmark" para otros modelos para periodos en los que no haya medidas de campo del drenaje. El funcionamiento de DSSAT-CENTURY en la simulación de SOC y N depende fuertemente del proceso de inicialización. Se propuso como método alternativo (Met.2) la inicialización de las fracciones de SOC a partir de medidas de mineralización aparente del suelo (Napmin). El Met.2 se comparó con el método de inicialización de Basso et al. (2011) (Met.1), aplicando ambos métodos a un experimento de campo de 4 años en un área en regadío de España central. Nmin y Napmin fueron sobreestimados con el Met.1, ya que la fracción estable obtenida (SOC3) en las capas superficiales del suelo fue más baja que con Met.2. El N lixiviado simulado fue similar en los dos métodos, con buenos resultados en los tratamientos de barbecho y cebada. El Met.1 subestimó el SOC en la capa superficial del suelo cuando se comparó con una serie observada de 12 años. El crecimiento y rendimiento del cultivo fueron adecuadamente simulados con ambos métodos, pero el N en la parte aérea de la planta y en el grano fueron sobreestimados con el Met.1. Los resultados variaron significativamente con las fracciones iniciales de SOC, resaltando la importancia del método de inicialización. El Met.2 ofrece una alternativa para la inicialización del modelo CENTURY, mejorando la simulación de procesos de N en el suelo. La continua emergencia de nuevas variedades de híbridos modernos de maíz limita la aplicación de modelos de simulación de cultivos, ya que estos nuevos híbridos necesitan ser calibrados en el campo para ser adecuados para su uso en los modelos. El desarrollo de relaciones basadas en la duración del ciclo, simplificaría los requerimientos de calibración facilitando la rápida incorporación de nuevos cultivares en DSSAT. Seis híbridos de maiz (FAO 300 hasta FAO 700) fueron cultivados en un experimento de campo de dos años en un área semiárida de regadío en España central. Los coeficientes genéticos fueron obtenidos secuencialmente, comenzando con los parámetros de desarrollo fenológico (P1, P2, P5 and PHINT), seguido de los parámetros de crecimiento del cultivo (G2 and G3). Se continuó el procedimiento hasta que la salida de las simulaciones estuvo en concordancia con las observaciones fenológicas de campo. Después de la calibración, los parámetros simulados se ajustaron bien a los parámetros observados, con bajos RMSE en todos los casos. Los P1 y P5 calibrados, incrementaron con la duración del ciclo. P1 fue una función lineal del tiempo térmico (TT) desde emergencia hasta floración y P5 estuvo linealmente relacionada con el TT desde floración a madurez. No hubo diferencias significativas en PHINT entre híbridos de FAO-500 a 700 , ya que tuvieron un número de hojas similar. Como los coeficientes fenológicos estuvieron directamente relacionados con la duración del ciclo, sería posible desarrollar rangos y correlaciones que permitan estimar dichos coeficientes a partir de la clasificación del ciclo. ABSTRACT Crop simulation models allow analyzing various tillage-rotation combinations and exploring management scenarios. DSSAT model was tested under rainfed conditions in a 16-year field experiment in semiarid central Spain. The effect of tillage system and winter cereal-based rotations on the crop yield and soil quality was evaluated. The CERES and CROPGRO models were used to simulate crop growth and yield, while the DSSAT CENTURY was used in the SOC and SN simulations. Both field observations and CERES-Barley simulations, showed that barley grain yield was lower for continuous cereal (BB) than for vetch (VB) and fallow (FB) rotations for both tillage systems. The model predicted higher nitrogen availability in the conventional tillage (CT) than in the no tillage (NT) leading to a higher yield in the CT. The SOC and SN in the top layer, were higher in NT than in CT, and decreased with depth in both simulated and observed values. The best combinations for the dry land conditions studied were CT-VB and CT-FB, but CT presented lower SN and SOC content than NT. The beneficial effect of NT on SOC and SN under semiarid Mediterranean conditions can be identified by field observations and by crop model simulations. The simulation of the water balance in cropping systems is a useful tool to study how water can be used efficiently. The comparison of DSSAT soil water balance, with a simpler “tipping bucket” approach, with the more mechanistic WAVE model, which integrates Richard’s equation, is a powerful method to assess model performance. The soil parameters were calibrated by using the Simulated Annealing (SA) global optimizing method. A continuous weighing lysimeter in a bare fallow provided the observed values of drainage and evapotranspiration (ET) while soil water content (SW) was supplied by capacitance sensors. Both models performed well after optimizing soil parameters with SA, simulating the soil water balance components for the calibrated period. For the validation period, the optimized models predicted well soil water content and soil evaporation over time. However, drainage was predicted better by WAVE than by DSSAT, which presented larger errors in the cumulative values. That could be due to the mechanistic nature of WAVE against the more functional nature of DSSAT. The good results from WAVE indicate that, after calibration, it could be used as benchmark for other models for periods when no drainage field measurements are available. The performance of DSSAT-CENTURY when simulating SOC and N strongly depends on the initialization process. Initialization of the SOC pools from apparent soil N mineralization (Napmin) measurements was proposed as alternative method (Met.2). Method 2 was compared to the Basso et al. (2011) initialization method (Met.1), by applying both methods to a 4-year field experiment in a irrigated area of central Spain. Nmin and Napmin were overestimated by Met.1, since the obtained stable pool (SOC3) in the upper layers was lower than from Met.2. Simulated N leaching was similar for both methods, with good results in fallow and barley treatments. Method 1 underestimated topsoil SOC when compared with a 12-year observed serial. Crop growth and yield were properly simulated by both methods, but N in shoots and grain were overestimated by Met.1. Results varied significantly with the initial SOC pools, highlighting the importance of the initialization procedure. Method 2 offers an alternative to initialize the CENTURY model, enhancing the simulation of soil N processes. The continuous emergence of new varieties of modern maize hybrids limits the application of crop simulation models, since these new hybrids should be calibrated in the field to be suitable for model use. The development of relationships based on the cycle duration, would simplify the calibration requirements facilitating the rapid incorporation of new cultivars into DSSAT. Six maize hybrids (FAO 300 through FAO 700) were grown in a 2-year field experiment in a semiarid irrigated area of central Spain. Genetic coefficients were obtained sequentially, starting with the phenological development parameters (P1, P2, P5 and PHINT), followed by the crop growth parameters (G2 and G3). The procedure was continued until the simulated outputs were in good agreement with the field phenological observations. After calibration, simulated parameters matched observed parameters well, with low RMSE in most cases. The calibrated P1 and P5 increased with the duration of the cycle. P1 was a linear function of the thermal time (TT) from emergence to silking and P5 was linearly related with the TT from silking to maturity . There were no significant differences in PHINT between hybrids from FAO-500 to 700 , as they had similar leaf number. Since phenological coefficients were directly related with the cycle duration, it would be possible to develop ranges and correlations which allow to estimate such coefficients from the cycle classification.
Evaluation of the competitiveness of agri-food sector in the región of the Alcarria Conquense(Spain)
Resumo:
The agrifood industry, like other sectors, faces the ongoing challenge of improving their competitiveness in order to strengthen its market presence and cater to the growing global population. This research measures the competitiveness of the agrifood industry in the region of La Alcarria Conquense (Spain), in the framework of the evaluation of programs in the territory that have aimed at improving and enhancing this sector. Through building the competitiveness profiles (Porter, 1990) and cluster analysis we have identified six competitive strategy patterns in food companies in the region. In addition, we have analyzed each of the areas of competitiveness and we can identify the strengths and weaknesses of the sector, and identify recommendations for increasing the responsiveness of the territory. Among the defining characteristics are the lack of association, the limitation on payment systems or virtual absence of training and innovation. However, programs to support the sector are highly valued and reverse in the long-term viability of these companies.
Resumo:
The analysis of how tourists select their holiday destinations along with the factors determining their choices is very important for promoting tourism. In particular, transportation is supposed to have a great influence on the tourists’ decisions. The aim of this paper is to investigate the role of High Speed Rail (HSR) systems with respect to a destination choice. Two key tourist destinations in Europe namely Paris, and Madrid, have been chosen to identify the factors influencing this choice. On the basis of two surveys to obtain information from tourists, it has been found that the presence of architectural sites, the promotion quality of the destination itself, and the cultural and social events have an impact when making a destination choice. However the availability of the HSR systems affects the choice of Paris and Madrid as tourist destinations in a different way. For Paris, TGV is considered a real transport mode alternative among tourists. On the other hand, Madrid is chosen by tourists irrespective of the presence of an efficient HSR network. Data collected from the two surveys have been used for a further quantitative analysis. Regression models have been specified and parameters have been calibrated to identify the factors influencing holidaymakers to revisit Paris and Madrid and visit other tourist places accessible by HSR from these capitals
Resumo:
BIPV systems are small PV generation units spread out over the territory, and whose characteristics are very diverse. This makes difficult a cost-effective procedure for monitoring, fault detection, performance analyses, operation and maintenance. As a result, many problems affecting BIPV systems go undetected. In order to carry out effective automatic fault detection procedures, we need a performance indicator that is reliable and that can be applied on many PV systems at a very low cost. The existing approaches for analyzing the performance of PV systems are often based on the Performance Ratio (PR), whose accuracy depends on good solar irradiation data, which in turn can be very difficult to obtain or cost-prohibitive for the BIPV owner. We present an alternative fault detection procedure based on a performance indicator that can be constructed on the sole basis of the energy production data measured at the BIPV systems. This procedure does not require the input of operating conditions data, such as solar irradiation, air temperature, or wind speed. The performance indicator, called Performance to Peers (P2P), is constructed from spatial and temporal correlations between the energy output of neighboring and similar PV systems. This method was developed from the analysis of the energy production data of approximately 10,000 BIPV systems located in Europe. The results of our procedure are illustrated on the hourly, daily and monthly data monitored during one year at one BIPV system located in the South of Belgium. Our results confirm that it is possible to carry out automatic fault detection procedures without solar irradiation data. P2P proves to be more stable than PR most of the time, and thus constitutes a more reliable performance indicator for fault detection procedures. We also discuss the main limitations of this novel methodology, and we suggest several future lines of research that seem promising to improve on these procedures.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
The difficulty behind Wireless Sensor Network deployments in industrial environments not only resides in the number of nodes or the communication protocols but also in the real location of the sensor nodes and the parameters to be monitored. Sensor soiling, high humidity and unreachable locations, among others, make real deployments a very difficult task to plan. Even though it is possible to find myriad approaches for floor planners and deployment tools in the state of the art, most of these problems are very difficult to model and foresee before actually deploying the network in the final scenario. This work shows two real deployments in food factories and how their problems are found and overcome.
Resumo:
La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.
Resumo:
Vivimos una época en la que el mundo se transforma aceleradamente. La globalización está siguiendo un curso imparable, la población mundial así como la población urbana siguen creciendo, y en los países emergentes los ingresos promedios aumentan, resultando en un cambio también acelerado de las dietas y hábitos alimentarios. En conjunto esos factores están causando un aumento fundamental de la demanda de alimentos. Junto con la apertura de los mercados agrícolas, estos procesos han provocado un crecimiento del comercio internacional de alimentos durante la última década. Dado que muchos países de América Latina están dotados de abundancia de recursos naturales, estas tendencias han producido un crecimiento rápido de las exportaciones de bienes primarios desde América Latina al resto del mundo. En sólo 30 años la participación en el mercado agrícola de América Latina casi se ha duplicado, desde 10% en 1980 a 18% en 2010. Este aumento del comercio agrícola ha dado lugar a un debate sobre una serie de cuestiones cruciales relacionadas con los impactos del comercio en la seguridad alimentaria mundial, en el medio ambiente o en la reducción de la pobreza rural en países en desarrollo. Esta tesis aplica un marco integrado para analizar varios impactos relacionados con la transformación de los mercados agrícolas y los mercados rurales debidos a la globalización y, en particular, al progresivo aumento del comercio internacional. En concreto, la tesis aborda los siguientes temas: En primer lugar, la producción mundial de alimentos tendrá que aumentar considerablemente para poder satisfacer la demanda de una población mundial de 9000 millones personas en 2050, lo cual plantea grandes desafíos sobre los sistemas de la producción de alimentos. Alcanzar este logro, sin comprometer la integridad del medio ambiente en regiones exportadoras, es un reto aún mayor. En este contexto, la tesis analiza los efectos de la liberalización del comercio mundial, considerando distintas tecnologías de producción agraria, sobre unos indicadores de seguridad alimentaria en diferentes regiones del mundo y sobre distintos indicadores ambientales, teniendo en cuenta escalas diferentes en América Latina y el Caribe. La tesis utiliza el modelo “International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT)” – un modelo dinámico de equilibrio parcial del sector agrícola a escala global – para modelar la apertura de los mercados agrícolas así como diferentes escenarios de la producción hasta el año 2050. Los resultados del modelo están vinculados a modelos biofísicos para poder evaluar los cambios en la huella hídrica y la calidad del agua, así como para cuantificar los impactos del cambio en el uso del suelo sobre la biodiversidad y los stocks de carbono en 2050. Los resultados indican que la apertura de los mercados agrícolas es muy importante para mejorar la seguridad alimentaria a nivel mundial, sin embargo, produce también presiones ambientales indeseables en algunas regiones de América Latina. Contrastando dos escenarios que consideran distintas modos de producción, la expansión de la tierra agrícola frente a un escenario de la producción más intensiva, se demuestra que las mejoras de productividad son generalmente superiores a la expansión de las tierras agrícolas, desde un punto de vista económico e ambiental. En cambio, los escenarios de intensificación sostenible no sólo hacen posible una mayor producción de alimentos, sino que también generan menos impactos medioambientales que los otros escenarios futuros en todas sus dimensiones: biodiversidad, carbono, emisiones de nitratos y uso del agua. El análisis muestra que hay un “trade-off” entre el objetivo de alcanzar la sostenibilidad ambiental y el objetivo de la seguridad alimentaria, independiente del manejo agrícola en el futuro. En segundo lugar, a la luz de la reciente crisis de los precios de alimentos en los años 2007/08, la tesis analiza los impactos de la apertura de los mercados agrícolas en la transmisión de precios de los alimentos en seis países de América Latina: Argentina, Brasil, Chile, Colombia, México y el Perú. Para identificar las posibles relaciones de cointegración entre los índices de precios al consumidor de alimentos y los índices de precios de agrarios internacionales, sujetos a diferentes grados de apertura de mercados agrícolas en los seis países de América Latina, se utiliza un modelo simple de corrección de error (single equation error correction). Los resultados indican que la integración global de los mercados agrícolas ha dado lugar a diferentes tasas de transmisión de precios en los países investigados. Sobre todo en el corto plazo, las tasas de transmisión dependen del grado de apertura comercial, mientras que en el largo plazo las tasas de transmisión son elevadas, pero en gran medida independientes del régimen de comercio. Por lo tanto, durante un período de shocks de precios mundiales una mayor apertura del comercio trae consigo más inestabilidad de los precios domésticos a corto plazo y la resultante persistencia en el largo plazo. Sin embargo, estos resultados no verifican necesariamente la utilidad de las políticas comerciales, aplicadas frecuentemente por los gobiernos para amortiguar los shocks de precios. Primero, porque existe un riesgo considerable de volatilidad de los precios debido a cambios bruscos de la oferta nacional si se promueve la autosuficiencia en el país; y segundo, la política de proteccionismo asume el riesgo de excluir el país de participar en las cadenas de suministro de alto valor del sector agrícola, y por lo tanto esa política podría obstaculizar el desarrollo económico. Sin embargo, es indispensable establecer políticas efectivas para reducir la vulnerabilidad de los hogares a los aumentos repentinos de precios de alimentos, lo cual requiere una planificación gubernamental precisa con el presupuesto requerido disponible. En tercer lugar, la globalización afecta a la estructura de una economía y, por medios distintos, la distribución de los ingreso en un país. Perú sirve como ejemplo para investigar más profundamente las cuestiones relacionadas con los cambios en la distribución de los ingresos en zonas rurales. Perú, que es un país que está cada vez más integrado en los mercados mundiales, consiguió importantes descensos en la pobreza extrema en sus zonas rurales, pero a la vez adolece de alta incidencia de pobreza moderada y de desigualdad de los ingresos en zonas rural al menos durante el periodo comprendido entre 2004 y 2012. Esta parte de la tesis tiene como objetivo identificar las fuerzas impulsoras detrás de estas dinámicas en el Perú mediante el uso de un modelo de microsimulación basado en modelos de generación de ingresos aplicado a nivel los hogares rurales. Los resultados indican que la fuerza principal detrás de la reducción de la pobreza ha sido el crecimiento económico general de la economía, debido a las condiciones macroeconómicas favorables durante el periodo de estudio. Estos efectos de crecimiento beneficiaron a casi todos los sectores rurales, y dieron lugar a la disminución de la pobreza rural extrema, especialmente entre los agricultores de papas y de maíz. En parte, estos agricultores probablemente se beneficiaron de la apertura de los mercados agrícolas, que es lo que podría haber provocado un aumento de los precios al productor en tiempos de altos precios mundiales de los alimentos. Sin embargo, los resultados también sugieren que para una gran parte de la población más pobre existían barreras de entrada a la hora de poder participar en el empleo asalariado fuera de la agricultura o en la producción de cultivos de alto valor. Esto podría explicarse por la falta de acceso a unos activos importantes: por ejemplo, el nivel de educación de los pobres era apenas mejor en 2012 que en 2004; y también las dotaciones de tierra y de mano de obra, sobre todo de los productores pobres de maíz y patata, disminuyeron entre 2004 y 2012. Esto lleva a la conclusión de que aún hay margen para aplicar políticas para facilitar el acceso a estos activos, que podría contribuir a la erradicación de la pobreza rural. La tesis concluye que el comercio agrícola puede ser un importante medio para abastecer una población mundial creciente y más rica con una cantidad suficiente de calorías. Para evitar adversos efectos ambientales e impactos negativos para los consumidores y de los productores pobres, el enfoque debe centrarse en las mejoras de la productividad agrícola, teniendo en cuenta los límites ambientales y ser socialmente inclusivo. En este sentido, será indispensable seguir desarrollando soluciones tecnológicas que garanticen prácticas de producción agrícola minimizando el uso de recursos naturales. Además, para los pequeños pobres agricultores será fundamental eliminar las barreras de entrada a los mercados de exportación que podría tener efectos indirectos favorables a través de la adopción de nuevas tecnologías alcanzables a través de mercados internacionales. ABSTRACT The world is in a state of rapid transition. Ongoing globalization, population growth, rising living standards and increasing urbanization, accompanied by changing dietary patterns throughout the world, are increasing the demand for food. Together with more open trade regimes, this has triggered growing international agricultural trade during the last decade. For many Latin American countries, which are gifted with relative natural resource abundance, these trends have fueled rapid export growth of primary goods. In just 30 years, the Latin American agricultural market share has almost doubled from 10% in 1980 to 18% in 2010. These market developments have given rise to a debate around a number of crucial issues related to the role of agricultural trade for global food security, for the environment or for poverty reduction in developing countries. This thesis uses an integrated framework to analyze a broad array of possible impacts related to transforming agricultural and rural markets in light of globalization, and in particular of increasing trade activity. Specifically, the following issues are approached: First, global food production will have to rise substantially by the year 2050 to meet effective demand of a nine billion people world population which poses major challenges to food production systems. Doing so without compromising environmental integrity in exporting regions is an even greater challenge. In this context, the thesis explores the effects of future global trade liberalization on food security indicators in different world regions and on a variety of environmental indicators at different scales in Latin America and the Caribbean, in due consideration of different future agricultural production practices. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) –a global dynamic partial equilibrium model of the agricultural sector developed by the International Food Policy Research Institute (IFPRI)– is applied to run different future production scenarios, and agricultural trade regimes out to 2050. Model results are linked to biophysical models, used to assess changes in water footprints and water quality, as well as impacts on biodiversity and carbon stocks from land use change by 2050. Results indicate that further trade liberalization is crucial for improving food security globally, but that it would also lead to more environmental pressures in some regions across Latin America. Contrasting land expansion versus more intensified agriculture shows that productivity improvements are generally superior to agricultural land expansion, from an economic and environmental point of view. Most promising for achieving food security and environmental goals, in equal measure, is the sustainable intensification scenario. However, the analysis shows that there are trade-offs between environmental and food security goals for all agricultural development paths. Second, in light of the recent food price crisis of 2007/08, the thesis looks at the impacts of increasing agricultural market integration on food price transmission from global to domestic markets in six Latin American countries, namely Argentina, Brazil, Chile, Colombia, Mexico and Peru. To identify possible cointegrating relationships between the domestic food consumer price indices and world food price levels, subject to different degrees of agricultural market integration in the six Latin American countries, a single equation error correction model is used. Results suggest that global agricultural market integration has led to different levels of price path-through in the studied countries. Especially in the short-run, transmission rates depend on the degree of trade openness, while in the long-run transmission rates are high, but largely independent of the country-specific trade regime. Hence, under world price shocks more trade openness brings with it more price instability in the short-term and the resulting persistence in the long-term. However, these findings do not necessarily verify the usefulness of trade policies, often applied by governments to buffer such price shocks. First, because there is a considerable risk of price volatility due to domestic supply shocks if self-sufficiency is promoted. Second, protectionism bears the risk of excluding a country from participating in beneficial high-value agricultural supply chains, thereby hampering economic development. Nevertheless, to reduce households’ vulnerability to sudden and large increases of food prices, effective policies to buffer food price shocks should be put in place, but must be carefully planned with the required budget readily available. Third, globalization affects the structure of an economy and, by different means, the distribution of income in a country. Peru serves as an example to dive deeper into questions related to changes in the income distribution in rural areas. Peru, a country being increasingly integrated into global food markets, experienced large drops in extreme rural poverty, but persistently high rates of moderate rural poverty and rural income inequality between 2004 and 2012. The thesis aims at disentangling the driving forces behind these dynamics by using a microsimulation model based on rural household income generation models. Results provide evidence that the main force behind poverty reduction was overall economic growth of the economy due to generally favorable macroeconomic market conditions. These growth effects benefited almost all rural sectors, and led to declines in extreme rural poverty, especially among potato and maize farmers. In part, these farmers probably benefited from policy changes towards more open trade regimes and the resulting higher producer prices in times of elevated global food price levels. However, the results also suggest that entry barriers existed for the poorer part of the population to participate in well-paid wage-employment outside of agriculture or in high-value crop production. This could be explained by a lack of sufficient access to important rural assets. For example, poor people’s educational attainment was hardly better in 2012 than in 2004. Also land and labor endowments, especially of (poor) maize and potato growers, rather decreased than increased over time. This leads to the conclusion that there is still scope for policy action to facilitate access to these assets, which could contribute to the eradication of rural poverty. The thesis concludes that agricultural trade can be one important means to provide a growing and richer world population with sufficient amounts of calories. To avoid adverse environmental effects and negative impacts for poor food consumers and producers, the focus should lie on agricultural productivity improvements, considering environmental limits and be socially inclusive. In this sense, it will be crucial to further develop technological solutions that guarantee resource-sparing agricultural production practices, and to remove entry barriers for small poor farmers to export markets which might allow for technological spill-over effects from high-value global agricultural supply chains.