40 resultados para 770701 Air quality
Resumo:
Abstract Air pollution is a big threat and a phenomenon that has a specific impact on human health, in addition, changes that occur in the chemical composition of the atmosphere can change the weather and cause acid rain or ozone destruction. Those are phenomena of global importance. The World Health Organization (WHO) considerates air pollution as one of the most important global priorities. Salamanca, Gto., Mexico has been ranked as one of the most polluted cities in this country. The industry of the area led to a major economic development and rapid population growth in the second half of the twentieth century. The impact in the air quality is important and significant efforts have been made to measure the concentrations of pollutants. The main pollution sources are locally based plants in the chemical and power generation sectors. The registered concerning pollutants are Sulphur Dioxide (SO2) and particles on the order of ∼10 micrometers or less (PM10). The prediction in the concentration of those pollutants can be a powerful tool in order to take preventive measures such as the reduction of emissions and alerting the affected population. In this PhD thesis we propose a model to predict concentrations of pollutants SO2 and PM10 for each monitoring booth in the Atmospheric Monitoring Network Salamanca (REDMAS - for its spanish acronym). The proposed models consider the use of meteorological variables as factors influencing the concentration of pollutants. The information used along this work is the current real data from REDMAS. In the proposed model, Artificial Neural Networks (ANN) combined with clustering algorithms are used. The type of ANN used is the Multilayer Perceptron with a hidden layer, using separate structures for the prediction of each pollutant. The meteorological variables used for prediction were: Wind Direction (WD), wind speed (WS), Temperature (T) and relative humidity (RH). Clustering algorithms, K-means and Fuzzy C-means, are used to find relationships between air pollutants and weather variables under consideration, which are added as input of the RNA. Those relationships provide information to the ANN in order to obtain the prediction of the pollutants. The results of the model proposed in this work are compared with the results of a multivariate linear regression and multilayer perceptron neural network. The evaluation of the prediction is calculated with the mean absolute error, the root mean square error, the correlation coefficient and the index of agreement. The results show the importance of meteorological variables in the prediction of the concentration of the pollutants SO2 and PM10 in the city of Salamanca, Gto., Mexico. The results show that the proposed model perform better than multivariate linear regression and multilayer perceptron neural network. The models implemented for each monitoring booth have the ability to make predictions of air quality that can be used in a system of real-time forecasting and human health impact analysis. Among the main results of the development of this thesis we can cite: A model based on artificial neural network combined with clustering algorithms for prediction with a hour ahead of the concentration of each pollutant (SO2 and PM10) is proposed. A different model was designed for each pollutant and for each of the three monitoring booths of the REDMAS. A model to predict the average of pollutant concentration in the next 24 hours of pollutants SO2 and PM10 is proposed, based on artificial neural network combined with clustering algorithms. Model was designed for each booth of the REDMAS and each pollutant separately. Resumen La contaminación atmosférica es una amenaza aguda, constituye un fenómeno que tiene particular incidencia sobre la salud del hombre. Los cambios que se producen en la composición química de la atmósfera pueden cambiar el clima, producir lluvia ácida o destruir el ozono, fenómenos todos ellos de una gran importancia global. La Organización Mundial de la Salud (OMS) considera la contaminación atmosférica como una de las más importantes prioridades mundiales. Salamanca, Gto., México; ha sido catalogada como una de las ciudades más contaminadas en este país. La industria de la zona propició un importante desarrollo económico y un crecimiento acelerado de la población en la segunda mitad del siglo XX. Las afectaciones en el aire son graves y se han hecho importantes esfuerzos por medir las concentraciones de los contaminantes. Las principales fuentes de contaminación son fuentes fijas como industrias químicas y de generación eléctrica. Los contaminantes que se han registrado como preocupantes son el Bióxido de Azufre (SO2) y las Partículas Menores a 10 micrómetros (PM10). La predicción de las concentraciones de estos contaminantes puede ser una potente herramienta que permita tomar medidas preventivas como reducción de emisiones a la atmósfera y alertar a la población afectada. En la presente tesis doctoral se propone un modelo de predicción de concentraci ón de los contaminantes más críticos SO2 y PM10 para cada caseta de monitorización de la Red de Monitorización Atmosférica de Salamanca (REDMAS). Los modelos propuestos plantean el uso de las variables meteorol ógicas como factores que influyen en la concentración de los contaminantes. La información utilizada durante el desarrollo de este trabajo corresponde a datos reales obtenidos de la REDMAS. En el Modelo Propuesto (MP) se aplican Redes Neuronales Artificiales (RNA) combinadas con algoritmos de agrupamiento. La RNA utilizada es el Perceptrón Multicapa con una capa oculta, utilizando estructuras independientes para la predicción de cada contaminante. Las variables meteorológicas disponibles para realizar la predicción fueron: Dirección de Viento (DV), Velocidad de Viento (VV), Temperatura (T) y Humedad Relativa (HR). Los algoritmos de agrupamiento K-means y Fuzzy C-means son utilizados para encontrar relaciones existentes entre los contaminantes atmosféricos en estudio y las variables meteorológicas. Dichas relaciones aportan información a las RNA para obtener la predicción de los contaminantes, la cual es agregada como entrada de las RNA. Los resultados del modelo propuesto en este trabajo son comparados con los resultados de una Regresión Lineal Multivariable (RLM) y un Perceptrón Multicapa (MLP). La evaluación de la predicción se realiza con el Error Medio Absoluto, la Raíz del Error Cuadrático Medio, el coeficiente de correlación y el índice de acuerdo. Los resultados obtenidos muestran la importancia de las variables meteorológicas en la predicción de la concentración de los contaminantes SO2 y PM10 en la ciudad de Salamanca, Gto., México. Los resultados muestran que el MP predice mejor la concentración de los contaminantes SO2 y PM10 que los modelos RLM y MLP. Los modelos implementados para cada caseta de monitorizaci ón tienen la capacidad para realizar predicciones de calidad del aire, estos modelos pueden ser implementados en un sistema que permita realizar la predicción en tiempo real y analizar el impacto en la salud de la población. Entre los principales resultados obtenidos del desarrollo de esta tesis podemos citar: Se propone un modelo basado en una red neuronal artificial combinado con algoritmos de agrupamiento para la predicción con una hora de anticipaci ón de la concentración de cada contaminante (SO2 y PM10). Se diseñó un modelo diferente para cada contaminante y para cada una de las tres casetas de monitorización de la REDMAS. Se propone un modelo de predicción del promedio de la concentración de las próximas 24 horas de los contaminantes SO2 y PM10, basado en una red neuronal artificial combinado con algoritmos de agrupamiento. Se diseñó un modelo para cada caseta de monitorización de la REDMAS y para cada contaminante por separado.
Resumo:
Emission inventories are databases that aim to describe the polluting activities that occur across a certain geographic domain. According to the spatial scale, the availability of information will vary as well as the applied assumptions, which will strongly influence its quality, accuracy and representativeness. This study compared and contrasted two emission inventories describing the Greater Madrid Region (GMR) under an air quality simulation approach. The chosen inventories were the National Emissions Inventory (NEI) and the Regional Emissions Inventory of the Greater Madrid Region (REI). Both of them were used to feed air quality simulations with the CMAQ modelling system, and the results were compared with observations from the air quality monitoring network in the modelled domain. Through the application of statistical tools, the analysis of emissions at cell level and cell – expansion procedures, it was observed that the National Inventory showed better results for describing on – road traffic activities and agriculture, SNAP07 and SNAP10. The accurate description of activities, the good characterization of the vehicle fleet and the correct use of traffic emission factors were the main causes of such a good correlation. On the other hand, the Regional Inventory showed better descriptions for non – industrial combustion (SNAP02) and industrial activities (SNAP03). It incorporated realistic emission factors, a reasonable fuel mix and it drew upon local information sources to describe these activities, while NEI relied on surrogation and national datasets which leaded to a poorer representation. Off – road transportation (SNAP08) was similarly described by both inventories, while the rest of the SNAP activities showed a marginal contribution to the overall emissions.
Resumo:
Salamanca is cataloged as one of the most polluted cities in Mexico. In order to observe the behavior and clarify the influence of wind parameters on the Sulphur Dioxide (SO2) concentrations a Self-Organizing Maps (SOM) Neural Network have been implemented at three monitoring locations for the period from January 1 to December 31, 2006. The maximum and minimum daily values of SO2 concentrations measured during the year of 2006 were correlated with the wind parameters of the same period. The main advantages of the SOM Neural Network is that it allows to integrate data from different sensors and provide readily interpretation results. Especially, it is powerful mapping and classification tool, which others information in an easier way and facilitates the task of establishing an order of priority between the distinguished groups of concentrations depending on their need for further research or remediation actions in subsequent management steps. For each monitoring location, SOM classifications were evaluated with respect to pollution levels established by Health Authorities. The classification system can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.
Resumo:
The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA.
Resumo:
Many cities in Europe have difficulties to meet the air quality standards set by the European legislation, most particularly the annual mean Limit Value for NO2. Road transport is often the main source of air pollution in urban areas and therefore, there is an increasing need to estimate current and future traffic emissions as accurately as possible. As a consequence, a number of specific emission models and emission factors databases have been developed recently. They present important methodological differences and may result in largely diverging emission figures and thus may lead to alternative policy recommendations. This study compares two approaches to estimate road traffic emissions in Madrid (Spain): the COmputer Programme to calculate Emissions from Road Transport (COPERT4 v.8.1) and the Handbook Emission Factors for Road Transport (HBEFA v.3.1), representative of the ‘average-speed’ and ‘traffic situation’ model types respectively. The input information (e.g. fleet composition, vehicle kilometres travelled, traffic intensity, road type, etc.) was provided by the traffic model developed by the Madrid City Council along with observations from field campaigns. Hourly emissions were computed for nearly 15 000 road segments distributed in 9 management areas covering the Madrid city and surroundings. Total annual NOX emissions predicted by HBEFA were a 21% higher than those of COPERT. The discrepancies for NO2 were lower (13%) since resulting average NO2/NOX ratios are lower for HBEFA. The larger differences are related to diesel vehicle emissions under “stop & go” traffic conditions, very common in distributor/secondary roads of the Madrid metropolitan area. In order to understand the representativeness of these results, the resulting emissions were integrated in an urban scale inventory used to drive mesoscale air quality simulations with the Community Multiscale Air Quality (CMAQ) modelling system (1 km2 resolution). Modelled NO2 concentrations were compared with observations through a series of statistics. Although there are no remarkable differences between both model runs, the results suggest that HBEFA may overestimate traffic emissions. However, the results are strongly influenced by methodological issues and limitations of the traffic model. This study was useful to provide a first alternative estimate to the official emission inventory in Madrid and to identify the main features of the traffic model that should be improved to support the application of an emission system based on “real world” emission factors.
Resumo:
Coarse particles of aerodynamic diameter between 2.5 and 10 mm (PMc) are produced by a range of natural (windblown dust and sea sprays) and anthropogenic processes (non-exhaust vehicle emissions, industrial, agriculture, construction and quarrying activities). Although current ambient air quality regulations focus on PM2.5 and PM10, coarse particles are of interest from a public health point of view as they have been associated with certain mortality and morbidity outcomes. In this paper, an analysis of coarse particle levels in three European capitals (London, Madrid and Athens) is presented and discussed. For all three cities we analysed data from both traffic and urban background monitoring sites. The results showed that the levels of coarse particles present significant seasonal, weekly and daily variability. Their wind driven and non-wind driven resuspension as well as their roadside increment due to traffic were estimated. Both the local meteorological conditions and the air mass history indicating long-range atmospheric transport of particles of natural origin are significant parameters that influence the levels of coarse particles in the three cities especially during episodic events.
Resumo:
This paper present an environmental contingency forecasting tool based on Neural Networks (NN). Forecasting tool analyzes every hour and daily Sulphur Dioxide (SO2) concentrations and Meteorological data time series. Pollutant concentrations and meteorological variables are self-organized applying a Self-organizing Map (SOM) NN in different classes. Classes are used in training phase of a General Regression Neural Network (GRNN) classifier to provide an air quality forecast. In this case a time series set obtained from Environmental Monitoring Network (EMN) of the city of Salamanca, Guanajuato, México is used. Results verify the potential of this method versus other statistical classification methods and also variables correlation is solved.
Resumo:
In this paper a method based mainly on Data Fusion and Artificial Neural Networks to classify one of the most important pollutants such as Particulate Matter less than 10 micrometer in diameter (PM10) concentrations is proposed. The main objective is to classify in two pollution levels (Non-Contingency and Contingency) the pollutant concentration. Pollutant concentrations and meteorological variables have been considered in order to build a Representative Vector (RV) of pollution. RV is used to train an Artificial Neural Network in order to classify pollutant events determined by meteorological variables. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca Guanajuato Mexico have been used. The method can help to establish a better air quality monitoring methodology that is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilitate the pollutants reduction.
Resumo:
En esta tesis se presenta una nueva aproximación para la realización de mapas de calidad del aire, con objeto de que esta variable del medio físico pueda ser tenida en cuenta en los procesos de planificación física o territorial. La calidad del aire no se considera normalmente en estos procesos debido a su composición y a la complejidad de su comportamiento, así como a la dificultad de contar con información fiable y contrastada. Además, la variabilidad espacial y temporal de las medidas de calidad del aire hace que sea difícil su consideración territorial y exige la georeferenciación de la información. Ello implica la predicción de medidas para lugares del territorio donde no existen datos. Esta tesis desarrolla un modelo geoestadístico para la predicción de valores de calidad del aire en un territorio. El modelo propuesto se basa en la interpolación de las medidas de concentración de contaminantes registradas en las estaciones de monitorización, mediante kriging ordinario, previa homogeneización de estos datos para eliminar su carácter local. Con el proceso de eliminación del carácter local, desaparecen las tendencias de las series muestrales de datos debidas a las variaciones temporales y espaciales de la calidad del aire. La transformación de los valores de calidad del aire en cantidades independientes del lugar de muestreo, se realiza a través de parámetros de uso del suelo y de otras variables características de la escala local. Como resultado, se obtienen unos datos de entrada espacialmente homogéneos, que es un requisito fundamental para la utilización de cualquier algoritmo de interpolación, en concreto, del kriging ordinario. Después de la interpolación, se aplica una retransformación de los datos para devolver el carácter local al mapa final. Para el desarrollo del modelo, se ha elegido como área de estudio la Comunidad de Madrid, por la disponibilidad de datos reales. Estos datos, valores de calidad del aire y variables territoriales, se utilizan en dos momentos. Un momento inicial, donde se optimiza la selección de los parámetros más adecuados para la eliminación del carácter local de las medidas y se desarrolla cada una de las etapas del modelo. Y un segundo momento, en el que se aplica en su totalidad el modelo desarrollado y se contrasta su eficacia predictiva. El modelo se aplica para la estimación de los valores medios y máximos de NO2 del territorio de estudio. Con la implementación del modelo propuesto se acomete la territorialización de los datos de calidad del aire con la reducción de tres factores clave para su efectiva integración en la planificación territorial o en el proceso de toma de decisiones asociado: incertidumbre, tiempo empleado para generar la predicción y recursos (datos y costes) asociados. El modelo permite obtener una predicción de valores del contaminante objeto de análisis en unas horas, frente a los periodos de modelización o análisis requeridos por otras metodologías. Los recursos necesarios son mínimos, únicamente contar con los datos de las estaciones de monitorización del territorio que, normalmente, están disponibles en las páginas web viii institucionales de los organismos gestores de las redes de medida de la calidad del aire. Por lo que respecta a las incertidumbres de la predicción, puede decirse que los resultados del modelo propuesto en esta tesis son estadísticamente muy correctos y que los errores medios son, en general, similares o menores que los encontrados con la aplicación de las metodologías existentes. ABSTRACT This thesis presents a new approach for mapping air quality, so that this variable of physical environment can be taken into account in physical or territorial planning. Ambient air quality is not normally considered in territorial planning mainly due to the complexity of its composition and behavior and the difficulty of counting with reliable and contrasted information. In addition, the wide spatial and temporal variability of the measurements of air quality makes his territorial consideration difficult and requires georeferenced information. This involves predicting measurements in the places of the territory where there are no data. This thesis develops a geostatistical model for predicting air quality values in a territory. The proposed model is based on the interpolation of measurements of pollutants from the monitoring stations, using ordinary kriging, after a detrending or removal of the local character of sampling values process. With the detrending process, the local character of the time series of sampling data, due to temporal and spatial variations of air quality, is removed. The transformation of the air quality values into site-independent quantities is performed using land use parameters and other characteristic parameters of local scale. This detrending of the monitoring data process results in a spatial homogeneous input set which is a prerequisite for a correct use of any interpolation algorithm, particularly, ordinary kriging. After the interpolation step, a retrending or retransformation is applied in order to incorporate the local character in the final map at places where no monitoring data is available. For the development of this model, the Community of Madrid is chosen as study area, because of the availability of actual data. These data, air quality values and local parameters, are used in two moments. A starting point, to optimize the selection of the most suitable indicators for the detrending process and to develop each one of the model stages. And a second moment, to fully implement the developed model and to evaluate its predictive power. The model is applied to estimate the average and maximum values of NO2 in the study territory. With the implementation of the proposed model, the territorialization of air quality data is undertaken with the reduction in three key factors for the effective integration of this parameter in territorial planning or in the associated decision making process: uncertainty, time taken to generate the prediction and associated resources (data and costs). This model allows the prediction of pollutant values in hours, compared to the implementation time periods required for other modeling or analysis methodologies. The required resources are also minimal, only having data from monitoring stations in the territory, that are normally available on institutional websites of the authorities responsible for air quality networks control and management. With regard to the prediction uncertainties, it can be concluded that the results of the proposed model are statistically very accurate and the mean errors are generally similar to or lower than those found with the application of existing methodologies.
Resumo:
La hipótesis de esta tesis es: "La optimización de la ventana considerando simultáneamente aspectos energéticos y aspectos relativos a la calidad ambiental interior (confort higrotérmico, lumínico y acústico) es compatible, siempre que se conozcan y consideren las sinergias existentes entre ellos desde las primeras fases de diseño". En la actualidad se desconocen las implicaciones de muchas de las decisiones tomadas en torno a la ventana; para que su eficiencia en relación a todos los aspectos mencionados pueda hacerse efectiva es necesaria una herramienta que aporte más información de la actualmente disponible en el proceso de diseño, permitiendo así la optimización integral, en función de las circunstancias específicas de cada proyecto. En la fase inicial de esta investigación se realiza un primer acercamiento al tema, a través del estado del arte de la ventana; analizando la normativa existente, los componentes, las prestaciones, los elementos experimentales y la investigación. Se observa que, en ocasiones, altos requisitos de eficiencia energética pueden suponer una disminución de las prestaciones del sistema en relación con la calidad ambiental interior, por lo que surge el interés por integrar al análisis energético aspectos relativos a la calidad ambiental interior, como son las prestaciones lumínicas y acústicas y la renovación de aire. En este punto se detecta la necesidad de realizar un estudio integral que incorpore los distintos aspectos y evaluar las sinergias que se dan entre las distintas prestaciones que cumple la ventana. Además, del análisis de las soluciones innovadoras y experimentales se observa la dificultad de determinar en qué medida dichas soluciones son eficientes, ya que son soluciones complejas, no caracterizadas y que no están incorporadas en las metodologías de cálculo o en las bases de datos de los programas de simulación. Por lo tanto, se plantea una segunda necesidad, generar una metodología experimental para llevar a cabo la caracterización y el análisis de la eficiencia de sistemas innovadores. Para abordar esta doble necesidad se plantea la optimización mediante una evaluación del elemento acristalado que integre la eficiencia energética y la calidad ambiental interior, combinando la investigación teórica y la investigación experimental. En el ámbito teórico, se realizan simulaciones, cálculos y recopilación de información de distintas tipologías de hueco, en relación con cada prestación de forma independiente (acústica, iluminación, ventilación). A pesar de haber partido con un enfoque integrador, resulta difícil esa integración detectándose una carencia de herramientas disponible. En el ámbito experimental se desarrolla una metodología para la evaluación del rendimiento y de aspectos ambientales de aplicación a elementos innovadores de difícil valoración mediante la metodología teórica. Esta evaluación consiste en el análisis comparativo experimental entre el elemento innovador y un elemento estándar; para llevar a cabo este análisis se han diseñado dos espacios iguales, que denominamos módulos de experimentación, en los que se han incorporado los dos sistemas; estos espacios se han monitorizado, obteniéndose datos de consumo, temperatura, iluminancia y humedad relativa. Se ha realizado una medición durante un periodo de nueve meses y se han analizado y comparado los resultados, obteniendo así el comportamiento real del sistema. Tras el análisis teórico y el experimental, y como consecuencia de esa necesidad de integrar el conocimiento existente se propone una herramienta de evaluación integral del elemento acristalado. El desarrollo de esta herramienta se realiza en base al procedimiento de diagnóstico de calidad ambiental interior (CAI) de acuerdo con la norma UNE 171330 “Calidad ambiental en interiores”, incorporando el factor de eficiencia energética. De la primera parte del proceso, la parte teórica y el estado del arte, se obtendrán los parámetros que son determinantes y los valores de referencia de dichos parámetros. En base a los parámetros relevantes obtenidos se da forma a la herramienta, que consiste en un indicador de producto para ventanas que integra todos los factores analizados y que se desarrolla según la Norma UNE 21929 “Sostenibilidad en construcción de edificios. Indicadores de sostenibilidad”. ABSTRACT The hypothesis of this thesis is: "The optimization of windows considering energy and indoor environmental quality issues simultaneously (hydrothermal comfort, lighting comfort, and acoustic comfort) is compatible, provided that the synergies between these issues are known and considered from the early stages of design ". The implications of many of the decisions made on this item are currently unclear. So that savings can be made, an effective tool is needed to provide more information during the design process than the currently available, thus enabling optimization of the system according to the specific circumstances of each project. The initial phase deals with the study from an energy efficiency point of view, performing a qualitative and quantitative analysis of commercial, innovative and experimental windows. It is observed that sometimes, high-energy efficiency requirements may mean a reduction in the system's performance in relation to user comfort and health, that's why there is an interest in performing an integrated analysis of indoor environment aspects and energy efficiency. At this point a need for a comprehensive study incorporating the different aspects is detected, to evaluate the synergies that exist between the various benefits that meet the window. Moreover, from the analysis of experimental and innovative windows, a difficulty in establishing to what extent these solutions are efficient is observed; therefore, there is a need to generate a methodology for performing the analysis of the efficiency of the systems. Therefore, a second need arises, to generate an experimental methodology to perform characterization and analysis of the efficiency of innovative systems. To address this dual need, the optimization of windows by an integrated evaluation arises, considering energy efficiency and indoor environmental quality, combining theoretical and experimental research. In the theoretical field, simulations and calculations are performed; also information about the different aspects of indoor environment (acoustics, lighting, ventilation) is gathered independently. Despite having started with an integrative approach, this integration is difficult detecting lack available tools. In the experimental field, a methodology for evaluating energy efficiency and indoor environment quality is developed, to be implemented in innovative elements which are difficult to evaluate using a theoretical methodology This evaluation is an experimental comparative analysis between an innovative element and a standard element. To carry out this analysis, two equal spaces, called experimental cells, have been designed. These cells have been monitored, obtaining consumption, temperature, luminance and relative humidity data. Measurement has been performed during nine months and results have been analyzed and compared, obtaining results of actual system behavior. To advance this optimization, windows have been studied from the point of view of energy performance and performance in relation to user comfort and health: thermal comfort, acoustic comfort, lighting comfort and air quality; proposing the development of a methodology for an integrated analysis including energy efficiency and indoor environment quality. After theoretical and experimental analysis and as a result of the need to integrate existing knowledge, a comprehensive evaluation procedure for windows is proposed. This evaluation procedure is developed according to the UNE 171330 "Indoor Environmental Quality", also incorporating energy efficiency and cost as factors to evaluate. From the first part of the research process, outstanding parameters are chosen and reference values of these parameters are set. Finally, based on the parameters obtained, an indicator is proposed as windows product indicator. The indicator integrates all factors analyzed and is developed according to ISO 21929-1:2011"Sustainability in building construction. Sustainability indicators. Part 1: Framework for the development of indicators and a core set of indicators for buildings".
Resumo:
Green façades constitute constructive technologies with a positive influence on sustainability in cities and several urban climate parameters such as thermal comfort, air quality and water management. According to the current research, the implementation of urban greenery contributes to increase the cooling effect and mitigate the urban heat island (UHI) phenomenon. This paper focuses on the role of vegetation in improving the urban environment of Madrid (Spain). The simulation results show that green walls could be more effective in urban morphologies with narrow streets. During overheated periods, the streets with green walls have a higher relative humidity in the surrounding areas than those with trees. The air temperature is found to be a little lower. The reduction of wind speed means a positive effect on urban hygrothermal comfort. Therefore, green walls could be taken into account as suitable tools to modify the outdoor thermal environment in cities with an extreme Continental Mediterranean climate.
Resumo:
On December 17 came into force on community standard marine fuels.The SOx emissions will be increased in the main shipping routes at a rate of 3 to 4% annually. Most of the sulphur burden will be attributed to shipping activity. Therefore the extension of SECAs could be beneficial towards the improvement of air quality. This paper begins with a review of the current situation SECAS and ECAS areas, highlighting the rules to be implemented shortly. The aim of the paper is known the current situation bunkering determine the estimated short term in Spain from economic variables
Resumo:
For the decades to come can be foreseen that electricity and water will keep be playing a key role in the countries development, both can be considered the most important energy vectors and its control can be crucial for governments, companies and leaders in general. Energy is essential for all human activities and its availability is critical to economic and social development. In particular, electricity, a form of energy, is required to produce goods, to provide medical assistance and basic civic services in education, to assure availability of clean water, to create conducive environment for prosperity and improvement, and to keep an acceptable quality of life. The way in which electricity is generated from different resources varies through the different countries. Nuclear energy controlled within reactors to steam production, gas, fuel-oil and coal fired in power stations, water, solar and wind energy among others are employed, sometimes not very efficiently, to produce electricity. The so call energy mix of an individual country is formed up by the contribution of each resource or form of energy to the electricity generation market of the so country. During the last decade the establishment of proper energy mixes for countries has gained much importance, and energy drivers should enforce long term plans and policies. Hints, reports and guides giving tracks on energy resources contribution are been developed by noticeable organisations like the IEA (International Energy Agency) or the IAEA (International Atomic Energy Agency) and the WEC (World Energy Council). This paper evaluates energy issues the market and countries are facing today regarding energy mix scheduling and panorama. This paper revises and seeks to improve methodology available that are applicable on energy mix plan definition. Key Factors are identified, established and assessed through this paper for the common implementation, the themes driving the future energy mix methodology proposal. Those have a clear influence and are closely related to future environmental policies. Key Factors take into consideration sustainability, energy security, social and economic growth, climate change, air quality and social stability. The strength of the Key Factors application on energy system planning to different countries is contingent on country resources, location, electricity demand and electricity generation industry, technology available, economic situation and prospects, energy policy and regulation
Resumo:
The Mt. Amiata volcano (Tuscany, central Italy) hosts the second largest geothermal field of Italy. Its SW and NE sectors are characterized by the presence of several CO2-rich (mayor que95% by vol.) gas discharges. An intense Hg mining activity had taken place from the 19th century up to the end of the ?70s, particularly close to Abbadia San Salvatore, during which two drillings (Acqua Passante and Ermeta) intercepted a CO2-rich gas fertile horizon. The related gases are emitted in the atmosphere since 1938 and 1959, respectively, causing severe concerns for the local air quality. In this work the results of a geochemical and isotopic survey carried out on these gas emissions from March 2009 to January 2014 are presented. CO2 fluxes from both the two wells and soil from an area of about 653,500 m2 located between them were measured. The two wells are emitting up to 15,000, 92 and 8 tons y-1 of CO2, CH4 and H2S, respectively, while the computed soil CO2 output was estimated at 4,311 ton y-1. The spatial distribution of the CO2 soil flux suggests the presence of preferential patterns, indicating sites of higher permeability. Since the local municipality is evaluating the possibility to plug the Ermeta vent, a temporarily closure should first be carried out to test the possible influence of this operation on the diffuse soil degassing of deep-originated CO2 in the surrounding area. This implies that diffuse soil gases should carefully be monitored before proceeding with its definitive closure.
Resumo:
En esta memoria se muestra el desarrollo del proyecto realizado para la creación de un sistema implantado en espacios verdes de las ciudades. A partir del estudio previo del mercado en torno a las Smart Cities se plantea el desarrollo de un sistema que mejore la sostenibilidad, la eficiencia y la seguridad de sistemas de riego, de medidores de la calidad del aire o estaciones meteorológicas instalados en los espacios verdes y jardines de las ciudades. Sirve de demostrador de cómo mejorar la eficiencia del consumo de agua y energía, además de añadir la funcionalidad de monitorizar la información recibida por sensores instalados en estos espacios en tiempo real a través del sistema desarrollado. La finalidad de este proyecto es la de crear un demostrador que sirva de ejemplo e inspiración para proyectos futuros que se basen en las mismas herramientas que son ofrecidas por Telefónica. El demostrador consiste en el control, gestión y mantenimiento de estos espacios, de modo que se pueda realizar un control y un mantenimiento de los dispositivos y sensores instalados en cada localización y la monitorización de la información suministrada por dichos elementos gracias a la plataforma M2M mediante los simuladores de sensores que ofrece Telefónica para demostraciones. Desde la aplicación, y mediante tecnologías REST y WEB, se realiza la comunicación con los elementos ofrecidos por Telefónica. La información de los sensores almacenada se muestra mediante la creación de informes y gráficas, mostrando la información recibida de los distintos parámetros de medida posibles, como son consumo de agua, temperatura, humedad y medidas de calidad del aire entre otras disponibles. Además, hay un espacio disponible para localizar y gestionar los dispositivos de los que se disponga existiendo la posibilidad de creación de alertas y avisos en función de lo que requiera el usuario. La solución creada como demostrador tiene dos componentes realizados por el estudiante. El primer componente desarrollado consiste en una plataforma web mediante la cual se pueda gestionar en tiempo real los dispositivos instalados en estos espacios verdes, su localización, realizar informes y gráficas, mostrando la información recibida de los sensores y la gestión de reglas para controlar valores límites impuestos por el usuario. El segundo componente es un servicio REST al cual se accede desde la plataforma web creada en el anterior componente y realiza la comunicación con los servicios ofrecidos por Telefónica y la identificación del proveedor del servicio con Telefónica a través del uso de un certificado privado. Además, este componente lleva a cabo la gestión de usuarios, mediante la creación de un servicio de autenticación para limitar los recursos ofrecidos en el servicio REST a determinados usuarios. ABSTRACT. In this memorandum the development of the project carried out for the creation of an implanted into green spaces in cities system is shown. From the previous study of the market around the Smart Cities it arise development of a system to improve the sustainability, efficiency and safety of irrigation systems, meter air quality and green spaces installed weather stations and gardens of cities. It serves as a demonstrator of how to improve the efficiency of water and energy consumption, as well as adding functionality to monitor the information received by sensors installed in these spaces in real time through the system developed. The purpose of this project is to create a demonstrator to provide an example and an inspiration for future projects based on the same tools that are provided by Telefónica. The demonstrator consists of control, management and maintenance of these spaces, so that it can carry out checks and maintenance of devices and sensors installed at each location and monitoring of the information provided by these elements through the M2M platform sensor simulators offered by Telefónica. From the application, and using REST and Web technologies, communication with the items provided by Telefónica is performed. Information stored sensors is shown by creating reports and graphs showing information received from the different parameters as possible, such as water consumption, temperature, humidity and air quality measures among others available. Addition there is an available space to locate and manage devices which becomes available with the possibility of creating alerting and warnings based on what the user requires. The solution created as a demonstrator has two components made by the student. The first component consists of a developed web platform through which to manage real-time devices installed in these green spaces, displaying the information received from the sensors and management rules to control limit values by the user. The second component is a REST service which is accessible from the web platform created in the previous component and performs communication with the services provided by Telefónica and the identification of the service provider with Telefónica through the use of a private certificate. In addition, this component performs user management, by creating an authentication service to restrict the resources available on the REST service to certain users.