189 resultados para Ingeniería naval
Resumo:
Los adhesivos se conocen y han sido utilizados en multitud de aplicaciones a lo lago de la historia. En la actualidad, la tecnología de la adhesión como método de unión de materiales estructurales está en pleno crecimiento. Los avances científicos han permitido comprender mejor los fenómenos de adhesión, así como, mejorar y desarrollar nuevas formulaciones poliméricas que incrementan el rango de aplicaciones de los adhesivos. Por otro lado, el desarrollo de nuevos materiales y la necesidad de aligerar peso, especialmente en el sector transporte, hace que las uniones adhesivas se introduzcan en aplicaciones hasta ahora reservadas a otros sistemas de unión como la soldadura o las uniones mecánicas, ofreciendo rendimientos similares y, en ocasiones, superiores a los aportados por estas. Las uniones adhesivas ofrecen numerosas ventajas frente a otros sistemas de unión. En la industria aeronáutica y en automoción, las uniones adhesivas logran una reducción en el número de componentes (tales como los tornillos, remaches, abrazaderas) consiguiendo como consecuencia diseños más ligeros y una disminución de los costes de manipulación y almacenamiento, así como una aceleración de los procesos de ensamblaje, y como consecuencia, un aumento de los procesos de producción. En el sector de la construcción y en la fabricación de equipos industriales, se busca la capacidad para soportar la expansión y contracción térmica. Por lo tanto, se usan las uniones adhesivas para evitar producir la distorsión del sustrato al no ser necesario el calentamiento ni la deformación de las piezas cuando se someten a un calentamiento elevado y muy localizado, como en el caso de la soldadura, o cuando se someten a esfuerzos mecánicos localizados, en el caso de montajes remachados. En la industria naval, se están desarrollando técnicas de reparación basadas en la unión adhesiva para distribuir de forma más uniforme y homogénea las tensiones con el objetivo de mejorar el comportamiento frente a fatiga y evitar los problemas asociados a las técnicas de reparación habituales de corte y soldadura. Las uniones adhesivas al no requerir importantes aportes de calor como la soldadura, no producen modificaciones microestructurales indeseables como sucede en la zona fundida o en la zona afectada térmicamente de las uniones soldadas, ni deteriora los recubrimientos protectores de metales de bajo punto de fusión o de naturaleza orgánica. Sin embargo, las uniones adhesivas presentan una desventaja que dificulta su aplicación, se trata de su durabilidad a largo plazo. La primera causa de rotura de los materiales es la rotura por fatiga. Este proceso de fallo es la causa del 85% de las roturas de los materiales estructurales en servicio. La rotura por fatiga se produce cuando se somete al material a la acción de cargas que varían cíclicamente o a vibraciones durante un tiempo prolongado. Las uniones y estructuras sometidas a fatiga pueden fallar a niveles de carga por debajo del límite de resistencia estática del material. La rotura por fatiga en las uniones adhesivas no se produce por un proceso de iniciación y propagación de grieta de forma estable, el proceso de fatiga va debilitando poco a poco la unión hasta que llega un momento que provoca una rotura de forma rápida. Underhill explica este mecanismo como un proceso de daño irreversible de los enlaces más débiles en determinados puntos de la unión. Cuando se ha producido el deterioro de estas zonas más débiles, su área se va incrementando hasta que llega un momento en que la zona dañada es tan amplia que se produce el fallo completo de la unión. En ensayos de crecimiento de grieta realizados sobre probetas preagrietadas en viga con doble voladizo (DCB), Dessureault identifica los procesos de iniciación y crecimiento de grietas en muestras unidas con adhesivo epoxi como una acumulación de microfisuras en la zona próxima al fondo de grieta que, luego, van coalesciendo para configurar la grieta principal. Lo que supone, igualmente, un proceso de daño del adhesivo en la zona de mayor concentración de tensiones que, posteriormente, conduce al fallo de la unión. La presente tesis surge con el propósito de aumentar los conocimientos existentes sobre el comportamiento a fatiga de las uniones adhesivas y especialmente las realizadas con dos tipos de adhesivos estructurales aplicados en aceros con diferentes acabados superficiales. El estudio incluye la obtención de las curvas de tensión frente al número de ciclos hasta el fallo del componente, curvas SN o curvas de Wöhler, que permitirán realizar una estimación de la resistencia a la fatiga de un determinado material o estructura. Los ensayos de fatiga realizados mediante ciclos predeterminados de carga sinusoidales, de amplitud y frecuencia constantes, han permitido caracterizar el comportamiento a la fatiga por el número de ciclos hasta la rotura, siendo el límite de fatiga el valor al que tiende la tensión cuando el número de ciclos es muy grande. En algunos materiales, la fatiga no tiende a un valor límite sino que decrece de forma constante a medida que aumenta el número de ciclos. Para estas situaciones, se ha definido la resistencia a la fatiga (o límite de resistencia) por la tensión en que se produce la rotura para un número de ciclos predeterminado. Todos estos aspectos permitirán un mejor diseño de las uniones y las condiciones de trabajo de los adhesivos con el fin de lograr que la resistencia a fatiga de la unión sea mucho más duradera y el comportamiento total de la unión sea mucho mejor, contribuyendo al crecimiento de la utilización de las uniones adhesivas respecto a otras técnicas. ABSTRACT Adhesives are well-known and have been used in many applications throughout history. At present, adhesion bonding technology of structural materials is experiencing an important growth. Scientific advances have enabled a better understanding of the phenomena of adhesion, as well as to improve and develop new polymeric formulations that increase the range of applications. On the other hand, the development of new materials and the need to save weight, especially in the transport sector, have promote the use of adhesive bonding in many applications previously reserved for other joining technologies such as welded or mechanical joints, presenting similar or even higher performances. Adhesive bonding offers many advantages over other joining methods. For example, in the aeronautic industry and in the automation sector, adhesive bonding allows a reduction in the number of components (such as bolts, rivets, clamps) and as consequence, resulting in lighter designs and a decrease in handling and storage costs, as well as faster assembly processes and an improvement in the production processes. In the construction sector and in the industrial equipment manufacturing, the ability to withstand thermal expansion and contraction is required. Therefore, adhesion bonding technology is used to avoid any distortion of the substrate since this technology does not require heating nor the deformation of the pieces when these are exposed to very high and localized heating, as in welding, or when are subjected to localized mechanical stresses in the case of riveted joints. In the naval industry, repair techniques based in the adhesive bonding are being developed in order to distribute stresses more uniform and homogeneously in order to improve the performance against fatigue and to avoid the problems associated with standard repair techniques as cutting and welding. Adhesive bonding does not require the use of high temperatures and as consequence they do not produce undesirable microstructural changes, as it can be observed in molten zones or in heat-affected zones in the case of welding, neither is there damage of the protective coating of metals with low melting points or polymeric films. However, adhesive bonding presents a disadvantage that limits its application, the low longterm durability. The most common cause of fractures of materials is fatigue fracture. This failure process is the cause of 85% of the fracture of structural materials in service. Fatigue failure occurs when the materials are subjected to the action of cyclic loads or vibrations for a long period of time. The joints and structures subjected to fatigue can fail at stress values below the static strength of the material. Fatigue failure do not occurs by a static and homogeneous process of initiation and propagation of crack. The fatigue process gradually weakens the bond until the moment in which the fracture occurs very rapidly. Underhill explains this mechanism as a process of irreversible damage of the weakest links at certain points of the bonding. When the deterioration in these weaker zones occurs, their area increase until the damage zone is so extensive that the full failure of the joint occurs. During the crack growth tests performed on precracked double-cantilever beam specimen, (DCB), Dessureault identified the processes of crack initiation and growth in samples bonded with epoxy adhesive as a process of accumulation of microcracks on the zone near the crack bottom, then, they coalesced to configure the main crack. This is a damage process of the adhesive in the zone of high stress concentration that leads to failure of the bond. This thesis aims to further the understanding of the fatigue behavior of the adhesive bonding, primarily those based on two different types of structural adhesives used on carbon-steel with different surface treatments. This memory includes the analysis of the SN or Wöhler curves (stress vs. number of cycles curves up to the failure), allowing to carry out an estimation of the fatigue strength of a specific material or structure. The fatigue tests carried out by means of predetermined cycles of sinusoidal loads, with a constant amplitude and frequency, allow the characterisation of the fatigue behaviour. For some materials, there is a maximum stress amplitude below which the material never fails for any number of cycles, known as fatigue limit. In the other hand, for other materials, the fatigue does not tend toward a limit value but decreases constantly as the number of cycles increases. For these situations, the fatigue strength is defined by the stress at which the fracture occurs for a predetermined number of cycles. All these aspects will enable a better joint design and service conditions of adhesives in order to get more durable joints from the fatigue failure point of view and in this way contribute to increase the use of adhesive bonding over other joint techniques.
Resumo:
Discurso ofrecido por D. Rafael Portaencasa en el acto conmemorativo de las Bodas de Plata de la Promoción "Princesa Sofía", de la Escuela Universitaria de Ingeniería Técnica de Telecomunicación. En sus palabras, el Rector agradece el mecenazgo que en su día ofreció la Princesa Sofía a una promoción de estudiantes de la Escuela Técnica de Telecomunicación y repasa los logros que se han alcanzado desde entonces.
Resumo:
El tratamiento superficial por ondas de choque generadas por láser, LSP, es una técnica cuyo principal objetivo es el de la modificación del estado tensional de las primeras micras en profundidad de materiales metálicos. En sus comienzos está técnica fue empleada para inducir tensiones residuales de compresión en superficie, pero mientras se avanzaba en su desarrollo se empezaron a observar otros efectos. Profundizando en ellos se llega a la conclusión de que existe una fuerte relación entre todos, pero dependiendo de la aplicación a la que se vea sometido un componente tratado con LSP será necesario una serie de características que bien pueden ser ajustadas “a priori”. Para ello se ha de tener una buena caracterización del proceso láser y de las modificaciones que produce en las propiedades de un material determinado. Y es en este punto donde surge el problema: las modificaciones introducidas por el tratamiento láser son dependientes de la interacción de la energía del pulso láser con el material, es decir, para cada material es necesaria una caracterización previa de cómo sus propiedades son modificadas con las diferentes configuraciones del tratamiento LSP, encontrando para cada material un óptimo en los parámetros láser. En esta Tesis se pretende desarrollar una metodología para evaluar las modificaciones en las propiedades mecánicas y superficiales inducidas en materiales metálicos debido al tratamiento superficial por ondas de choque. De esta manera y avanzando de una manera lógica con la línea de investigación del grupo, se ha querido aplicar todo el conocimiento adquirido de la técnica para desarrollar esa metodología sobre un caso práctico: el empleo de dos configuraciones de tratamiento LSP sobre el acero inoxidable AISI 316L. Estas dos configuraciones elegidas se hacen en base a estudios previos, por parte del grupo de investigación, donde se han optimizados los parámetros para obtener el óptimo en lo que a perfil de tensiones residuales en profundidad se refiere. El material elegido como caso característico para llevar acabo la evaluación integrada del tratamiento LSP, de acuerdo con el propósito de esta Tesis, ha sido el acero inoxidable AISI 316L, debido a que este tipo de acero tiene una excelente resistencia a la corrosión en un amplio rango de atmosferas corrosivas, y es conocido como el grado estándar para un importante número de aplicaciones tecnológicas. La resistencia a la oxidación es buena incluso a altas temperaturas de servicio y la soldabilidad es excelente. Los aceros austeníticos son empleados en aplicaciones que soportan condiciones de alta temperatura y medios altamente corrosivos, como en reactores nucleares. Estos aceros resisten la corrosión en el agua de un reactor y procesos químicos en plantas que operan a temperaturas superiores a los 900 ˚C. En concreto el acero 316L se utiliza en la industria de equipamiento alimentario, en ambientes donde haya presencia de cloruros, en aplicaciones farmacéuticas, en la industria naval, en arquitectura, sector energético, centrales nucleares y en implantes médicos. Es decir, es un material ampliamente implantado en la industria, tanto en industrias tradicionales, como en industrias emergentes como la biomédica. El objetivo marcado para el desarrollo de la presente Tesis es caracterizar de forma precisa cómo el tratamiento superficial por ondas de choque generadas por láser es capaz de mejorar las propiedades de los materiales y cómo de estables son estas con la temperatura. Este punto es importante puesto que a la hora de introducir el proceso LSP en la industria no solo se tiene que tener en cuenta que las propiedades del material sean mejoradas, sino que también es necesario comprobar si esas mejoras se mantienen después de ser sometido el material a un tratamiento térmico ya que las condiciones de servicio de los materiales y componentes empleados no tienen por qué trabajar a temperatura ambiente. Para lograr el objetivo mencionado, el trabajo experimental realizado en la aleación seleccionada bajo todas las condiciones a estudio (material según fue recibido de fábrica, tratado con las dos configuraciones LSP y después de haber sido sometido al tratamiento térmico) ha consistido en lo siguiente: i) Estudios microestructural, morfológico y de composición química. ii) Medida de las tensiones residuales introducidas. iii) Caracterización superficial del material. iv) Estudio de las propiedades mecánicas: ensayos de tracción, ensayos de dureza, cálculo de la densidad de dislocaciones y ensayos de fatiga. v) Caracterización tribológica: ensayos de fricción y cálculo de la tasa de desgaste y volumen eliminado. vi) Caracterización electro-química para el material base y tratado con las dos configuraciones LSP. Se realizan medidas a circuito abierto, curvas de polarización (OCP), ensayos potenciostáticos y espectroscopia de impedancia electroquímica (EIS). El trabajo se ha llevado a cabo en los laboratorios del Centro Láser de la Universidad Politécnica de Madrid.
Resumo:
La realidad virtual es una alternativa de motivación de los estudiantes al darles la posibilidad de realizar acciones como volar u observar el entorno desde diferentes perspectivas de manera controlada. La interacción multiusuario en realidad virtual da lugar a los entornos virtuales colaborativos que favorecen el desarrollo de habilidades sociales como el trabajo en equipo, en particular en equipos con integrantes con ubicaciones geográficas diferentes. En estos contextos se encuentran diversas propuestas de aplicación de la realidad virtual que transportan a los estudiantes a entornos donde deben tomar decisiones conjuntas para lograr los objetivos propuestos. Sin embargo, estas propuestas no hacen énfasis en la importancia de reconocer las fortalezas o habilidades de cada miembro del equipo para mejorar su desempeño. El presente artículo propone un videojuego, basado en realidad virtual, que incorpora los principios de gamificación para promover y mejorar el trabajo en equipo en estudiantes de ingeniería.
Resumo:
Libro que recoge los trabajos presentados por estudiantes de grado, máster y doctorado en el VIII Congreso de estudiantes de Ciencia, Tecnología e Ingeniería Agronómica de la Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas de Madrid. Se trata de 28 documentos en español o inglés con una extensión de 4 folios y revisados por profesores de la Escuela antes de ser publicados en el Libro de Actas.
Resumo:
La formación de postgrado en ingeniería es muy importante para mejorar la competitividad y lograr el desarrollo en los países. Para ello es necesaria una fuerte vinculación de la universidad con su entorno socio económico de modo que los objetivos que se plantea en sus programas formativos sean coherentes con las necesidades reales de los beneficiarios: los estudiantes, la universidad y la comunidad. Es decir, los programas deben ser pertinentes. Y en los países en vías de desarrollo este tema es aún más importante. Se necesita modelos de evaluación que midan este grado de adecuación entre los objetivos de los programas con las necesidades de los estudiantes y las partes interesadas. Sin embargo, los modelos de evaluación existentes tienen principalmente fines de acreditación y están diseñados para evaluar la eficacia, es decir si los resultados obtenidos están de acuerdo con la misión y los objetivos planteados. Su objetivo no es medir la pertinencia. Esta investigación tiene como objetivo diseñar un modelo de evaluación de la pertinencia de maestrías en ingeniería y aplicarlo a un caso concreto. Se trata de maestrías que ya están en funcionamiento y son dictadas en una universidad en un país en desarrollo. Para diseñar el modelo se define primero el concepto de pertinencia de una maestría en ingeniería haciendo una revisión bibliográfica y consultando a expertos en los temas de pertinencia de la educación superior y formación en postgrado en ingeniería. Se utiliza una definición operativa que facilita luego la identificación de factores e indicadores de evaluación. Se identifica dos tipos de pertinencia: local y global. La pertinencia global está relacionada con la inserción de la maestría en el sistema global de producción de conocimiento. La pertinencia local tiene tres dimensiones: la personal, relacionada con la satisfacción de necesidades de los estudiantes, la institucional, relacionada con las necesidades e intereses de la universidad que acoge a la maestría y la pertinencia social, ligada a la satisfacción de necesidades y demandas de la comunidad local y nacional. El modelo diseñado es aplicado en la maestría en Ingeniería Civil con mención en Ingeniería Vial de la Universidad de Piura, Perú lo que permite obtener conclusiones para su aplicación en otras maestrías. ABSTRACT Graduate engineering education is very important to improve competitiveness and achieve development in countries. It is necessary a strong linkage between university and its socio economic environment, so that programs objectives are consistent with the real needs of the students, university and community. That is to say programs must be relevant. And in developing countries this issue is very important. Evaluation models to measure the degree of adequacy between the programs objectives with the needs of students and stakeholders is needed. However, existing evaluation models have mainly the purpose of accreditation and are designed to evaluate the efficacy. They evaluate if the results are consistent with the mission and objectives. Their goal is not to measure the relevance. This work aimed to design a model for evaluating the relevance of master's degrees in engineering and applied to a specific case. They must be masters already in operation and are taught at a university in a developing country. In order to build the model, first concept of relevance of a master's degree in engineering was defined. Literature was reviewed and we consulted experts on issues of relevance of higher education and graduate engineering education. An operational definition is used to facilitate the identification of factors and evaluation indicators. Local and global: two types of relevance were identified. The global relevance is related to the inclusion of Master in the global system of knowledge production. The local relevance has three dimensions: personal, related to meeting students' needs, institutional, related to the needs and interests of university that houses the Master and social relevance, linked to the satisfaction of needs and demands of local and national community. The designed model is applied to the Master degree in Civil Engineering with a major in Traffic Engineering of Universidad de Piura, Peru which allowed to obtain conclusions for application in other masters.
Resumo:
La presente obra es un compendio de conceptos, metodologías y técnicas útiles para acometer proyectos y obras en terrenos volcánicos desde el punto de vista de la ingeniería geológica y la geotecnia. El libro se presenta en tres partes diferenciadas. La primera es conceptual y metodológica, con capítulos que tratan sobre la clasificación de las rocas volcánicas con fines geotécnicos, la caracterización geomecánica, los problemas geotécnicos y constructivos asociados a los distintos materiales, y una guía metodológica para la redacción de informes geotécnicos para la edificación. La segunda parte aborda las aplicaciones a obras de ingeniería, incluyendo deslizamientos, obras subterráneas,infraestructuras marítimas y obras públicas. La tercera parte recoge capítulos dedicados a describir distintos casos prácticos de obras y proyectos en los que la problemática geotécnica en terrenos volcánicos ha tenido un papel relevante. Los capítulos han sido elaborados por técnicos y científicos de reconocido prestigio en el campo de la ingeniería geológica en terrenos volcánicos, que han plasmado en ellos sus conocimientos y experiencias en la materia.Los editores y autores de parte de los capítulos del libro, los Doctores Luis E. Hernández Gutiérrez (Geólogo) y Juan Carlos Santamarta Cerezal (Ingeniero de Montes, Civil y Minas), son los responsables del grupo de investigación INGENIA (Ingeniería Geológica, Innovación y Aguas). Su actividad investigadora comprende más de 200 publicaciones en el área de la ingeniería geológica, la geotecnia, medio ambiente y el aprovechamiento del agua en islas y terrenos volcánicos. En relación a la docencia han impartido y dirigido más de 90 seminarios y cursos de especialización a nivel nacional e internacional, incluyendo la organización de 4 congresos internacionales. Fueron premiados por la Universidad de La Laguna en los años 2012, 2013 y 2014 por su calidad docente e innovación universitaria, y son pioneros en los laboratorios virtuales para la enseñanza de la ingeniería. Participan activamente como profesores colaboradores e investigadores en varias universidades e instituciones españolas e internacionales. Todas sus publicaciones están disponibles en internet, con libre acceso. Ingeniería geológica en terrenos volcánicos, es una obra de gran interés para, consultores, técnicos de administraciones públicas, proyectistas y demás profesionales implicados en obras y proyectos de infraestructuras en terrenos volcánicos; también es útil para académicos y estudiantes de ingeniería o ciencias geológicas que quieran investigar o iniciarse en las singularidades que presentan los materiales volcánicos en la edificación o en la ingeniería civil y minera.
Resumo:
El objetivo del presente trabajo de investigación es diseñar un Modelo de Educación que permita formar ingenieros industriales en Perú que sean capaces de enfrentar los retos modernos de fuerte y sostenido crecimiento económico y social. Las necesidades que se han generado a lo largo de los últimos años llevan a identificar que una gran carencia es el poco dominio del concepto, naturaleza y gestión de un proyecto y la marcada ausencia de habilidades humanas y funcionales al momento de ejercer la profesión; entendiendo proyecto como “Un esfuerzo temporal que se lleva a cabo para crear un producto, servicio o resultado único. La naturaleza temporal de los proyectos indica un principio y un final definidos. El final se alcanza cuando se logran los objetivos del proyecto o cuando se termina el proyecto porque sus objetivos no se cumplirán o no pueden ser cumplidos, o cuando ya no existe la necesidad que dio origen al proyecto…. los proyectos pueden tener impactos sociales, económicos y ambientales susceptibles de perdurar mucho más que los propios proyectos.”1. Entonces, formularnos la hipótesis que es posible tener un modelo educativo para la Ingeniería Industrial de Perú que permita y estimule alcanzar estas características tan reclamadas por la sociedad, confiando desde el inicio que su diseño y empleo tendrá fuerte repercusión tanto en el desarrollo personal de los estudiantes, como en el social y económico, por las habilidades y condiciones que serán capaces de desplegar los egresados en sus ámbitos de acción laboral. Para lograr el objetivo se ha hecho una definición de la identidad de la universidad latinoamericana y una verificación de si es posible o no tomar modelos y experiencias de otros lugares y trasladarlos con éxito a escenarios nuevos y distintos. Luego, se han determinado las tendencias más fuertes en la formación de ingenieros industriales en los contextos más exitosos actualmente. Para definir esas habilidades tan reclamadas por el sector público y privado de la sociedad, se busca y define una codificación de competencias genéricas que permite tener un ingeniero moderno bien perfilado para las exigencias globales. Los pasos finales son determinar el Modelo para la Educación Superior de la Ingeniería Industrial de Perú desde las Competencias (MESIC) a partir de novedosos enfoques para la educación como la contextualización, la gestión del conocimiento experto y experimentado, el enfoque socioformativo y la definición de Aspectos Clave del modelo antes de iniciar una planificación curricular de ingeniería. Al final se muestra una aplicación del modelo llegando a detalles de definición de competencias muy interesantes y a la necesidad de contar con un sistema de aseguramiento de calidad de la gestión curricular. Al término de la investigación concluimos que es posible definir un modelo apropiado para formar ingenieros industriales en Perú desde las competencias, capaces de enfrentar los modernos retos locales y globales. También determinamos que el proceso no puede ser impuesto, debe pasar por un transitorio periodo de adecuación de docentes y alumnos y requiere de compromiso, pues se suele enfocar este cambio como una forma de desestimar todo lo anterior, cuando debe entenderse que son procesos complementarios, ya que los importantes logros con clases magistrales y resolución de problemas son evidentes y se trata de estilos diferentes de encarar la educación. El resultado de la imposición puede ser devastador para algunos estudiantes y frustrante para algunos docentes, consecuencias que no se desean y deben evitarse. La aplicación se realiza en una universidad del norte de Perú, la Universidad de Piura, y puede observarse en el último capítulo de este trabajo. ABSTRACT The main objective of this research is to find an Educational Modell in order to train industrial engineers in Peru who are able to face modern challenges of strong and sustained economic and social growth. Over recent years the generated needs have led to understand that a major weakness in our professionals is the poor skills in project management and the marked absence of functional and human skills when exercising the profession. This diagnose has led to formulate the hypothesis that it is possible to have an educational model for Peru Industrial Engineering that allows and encourages to achieve these features which are claimed by society. A project which we trust will have a strong impact from the beginning on both, personal development of students as well as in the social and economic conditions, considering the skills graduates will be able to deploy in their work fields. To achieve the goal first it was defined the identity of the Latin American university and verified whether it is possible or not to take models and experiences elsewhere and move successfully to new and different scenarios. Then there were determined the strongest trends in the industrial engineers training in currently successful contexts. In order to define these demanded skills by the public and private sectors of society, there are defined a set of generic skills that allows to have a modern engineer well profiled for global context. Considering these elements, a Model for Higher Education in Industrial Engineering from Peru Competence (MESIC)is proposed considering novel approaches to education such as territoriality, skilled and experienced knowledge management, socio - formative approach and set the definition of Key aspects of the model before starting a engineering curricular planning. Finally detailed records of an application of the model is shown through modern learning methodologies, development and assessment of skills and the need to have a quality assurance system for entire curriculum management. Through this research it can be concluded that it is possible to determine an appropriate model to train industrial engineers in Peru from the skills, in order to meet the modern local and global challenges. Results show that the process cannot be imposed, instead it must go through a transitional period of adaptation from teachers and students and requires commitment, focusing that this change usually is a way to dismiss the above, and is important to address that there are obvious achievements on education lectures and problem solving, and it should be understood that they are complementary processes. The result of change imposition can be devastating for some students and frustrating for some teachers, unwanted consequences and they should be avoided. The proposed model is applied at a university in northern Peru, the University of Piura, and the results can be seen in the last chapter of this work.
Resumo:
El objetivo de este Trabajo de Fin de Grado es diseñar e implementar un conjunto completo de prácticas que cubran los contenidos matemáticos de las prácticas actualmente disponibles aplicándolos a la resolución de problemas específicos de la ingeniería biomédica. Estas prácticas se implementan en Matlab, del que la UPM dispone la licencia de campus. Las prácticas van precedidas de un planteamiento de cada problema biomédico. Este planteamiento incluye la deducción del modelo matemático que representa el problema en cuestión, salvo que sea excesivamente complicado (en comparación con el nivel exigible en el GIB), en cuyo caso se realizará una introducción teórica del proceso físico-químico a estudiar. Lo que se busca es que los problemas sean representativos de los temas estudiados a lo largo del grado en otras asignaturas. Las prácticas incluyen además un código Matlab ya escrito (total o parcialmente) o simplemente las instrucciones para la escritura del código por parte del alumno. Lo que se pretende con estas prácticas es reforzar el aprendizaje del alumno, tanto en sus aspectos de planteamiento/modelización de problemas, como en los de resolución, presentación escrita/gráfica de resultados y análisis de los mismos. Para lograr los objetivos expuestos se ha realizado en primer lugar una exhaustiva revisión bibliográfica sobre el tema, seguido del diseño de las prácticas, su implementación en Matlab y la prueba de los códigos. Una vez verificado su correcto funcionamiento, se redactó una guía del alumno, que contiene tanto el planteamiento teórico de la práctica como las instrucciones para su realización, y una guía del profesor, que incluye las soluciones de las prácticas y, en su caso, los problemas más habituales esperados en la resolución de las mismas. Se pretende con esta guía del profesor disponer de un manual que pueda ser fácilmente utilizado por posibles monitores de prácticas que ayuden al docente en su labor durante las sesiones de laboratorio de la asignatura.