19 resultados para vehicle trajectory data


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La gestión del tráfico aéreo (Air Traffic Management, ATM) está experimentando un cambio de paradigma hacia las denominadas operaciones basadas trayectoria. Bajo dicho paradigma se modifica el papel de los controladores de tráfico aéreo desde una operativa basada su intervención táctica continuada hacia una labor de supervisión a más largo plazo. Esto se apoya en la creciente confianza en las soluciones aportadas por las herramientas automatizadas de soporte a la decisión más modernas. Para dar soporte a este concepto, se precisa una importante inversión para el desarrollo, junto con la adquisición de nuevos equipos en tierra y embarcados, que permitan la sincronización precisa de la visión de la trayectoria, basada en el intercambio de información entre ambos actores. Durante los últimos 30 a 40 años las aerolíneas han generado uno de los menores retornos de la inversión de entre todas las industrias. Sin beneficios tangibles, la industria aérea tiene dificultades para atraer el capital requerido para su modernización, lo que retrasa la implantación de dichas mejoras. Esta tesis tiene como objetivo responder a la pregunta de si las capacidades actualmente instaladas en las aeronaves comerciales se pueden aplicar para lograr la sincronización de la trayectoria con el nivel de calidad requerido. Además, se analiza en ella si, conjuntamente con mejoras en las herramientas de predicción trayectorias instaladas en tierra en para facilitar la gestión de las arribadas, dichas capacidades permiten obtener los beneficios esperados en el marco de las operaciones basadas en trayectoria. Esto podría proporcionar un incentivo para futuras actualizaciones de la aviónica que podrían llevar a mejoras adicionales. El concepto operacional propuesto en esta tesis tiene como objetivo permitir que los aviones sean pilotados de una manera consistente con las técnicas actuales de vuelo optimizado. Se permite a las aeronaves que desciendan en el denominado “modo de ángulo de descenso gestionado” (path-managed mode), que es el preferido por la mayoría de las compañías aéreas, debido a que conlleva un reducido consumo de combustible. El problema de este modo es que en él no se controla de forma activa el tiempo de llegada al punto de interés. En nuestro concepto operacional, la incertidumbre temporal se gestiona en mediante de la medición del tiempo en puntos estratégicamente escogidos a lo largo de la trayectoria de la aeronave, y permitiendo la modificación por el control de tierra de la velocidad de la aeronave. Aunque la base del concepto es la gestión de las ordenes de velocidad que se proporcionan al piloto, para ser capaces de operar con los niveles de equipamiento típicos actualmente, dicho concepto también constituye un marco en el que la aviónica más avanzada (por ejemplo, que permita el control por el FMS del tiempo de llegada) puede integrarse de forma natural, una vez que esta tecnología este instalada. Además de gestionar la incertidumbre temporal a través de la medición en múltiples puntos, se intenta reducir dicha incertidumbre al mínimo mediante la mejora de las herramienta de predicción de la trayectoria en tierra. En esta tesis se presenta una novedosa descomposición del proceso de predicción de trayectorias en dos etapas. Dicha descomposición permite integrar adecuadamente los datos de la trayectoria de referencia calculada por el Flight Management System (FMS), disponibles usando Futuro Sistema de Navegación Aérea (FANS), en el sistema de predicción de trayectorias en tierra. FANS es un equipo presente en los aviones comerciales de fuselaje ancho actualmente en la producción, e incluso algunos aviones de fuselaje estrecho pueden tener instalada avionica FANS. Además de informar automáticamente de la posición de la aeronave, FANS permite proporcionar (parte de) la trayectoria de referencia en poder de los FMS, pero la explotación de esta capacidad para la mejora de la predicción de trayectorias no se ha estudiado en profundidad en el pasado. La predicción en dos etapas proporciona una solución adecuada al problema de sincronización de trayectorias aire-tierra dado que permite la sincronización de las dimensiones controladas por el sistema de guiado utilizando la información de la trayectoria de referencia proporcionada mediante FANS, y también facilita la mejora en la predicción de las dimensiones abiertas restantes usado un modelo del guiado que explota los modelos meteorológicos mejorados disponibles en tierra. Este proceso de predicción de la trayectoria de dos etapas se aplicó a una muestra de 438 vuelos reales que realizaron un descenso continuo (sin intervención del controlador) con destino Melbourne. Dichos vuelos son de aeronaves del modelo Boeing 737-800, si bien la metodología descrita es extrapolable a otros tipos de aeronave. El método propuesto de predicción de trayectorias permite una mejora en la desviación estándar del error de la estimación del tiempo de llegada al punto de interés, que es un 30% menor que la que obtiene el FMS. Dicha trayectoria prevista mejorada se puede utilizar para establecer la secuencia de arribadas y para la asignación de las franjas horarias para cada aterrizaje (slots). Sobre la base del slot asignado, se determina un perfil de velocidades que permita cumplir con dicho slot con un impacto mínimo en la eficiencia del vuelo. En la tesis se propone un nuevo algoritmo que determina las velocidades requeridas sin necesidad de un proceso iterativo de búsqueda sobre el sistema de predicción de trayectorias. El algoritmo se basa en una parametrización inteligente del proceso de predicción de la trayectoria, que permite relacionar el tiempo estimado de llegada con una función polinómica. Resolviendo dicho polinomio para el tiempo de llegada deseado, se obtiene de forma natural el perfil de velocidades optimo para cumplir con dicho tiempo de llegada sin comprometer la eficiencia. El diseño de los sistemas de gestión de arribadas propuesto en esta tesis aprovecha la aviónica y los sistemas de comunicación instalados de un modo mucho más eficiente, proporcionando valor añadido para la industria. Por tanto, la solución es compatible con la transición hacia los sistemas de aviónica avanzados que están desarrollándose actualmente. Los beneficios que se obtengan a lo largo de dicha transición son un incentivo para inversiones subsiguientes en la aviónica y en los sistemas de control de tráfico en tierra. ABSTRACT Air traffic management (ATM) is undergoing a paradigm shift towards trajectory based operations where the role of an air traffic controller evolves from that of continuous intervention towards supervision, as decision making is improved based on increased confidence in the solutions provided by advanced automation. To support this concept, significant investment for the development and acquisition of new equipment is required on the ground as well as in the air, to facilitate the high degree of trajectory synchronisation and information exchange required. Over the past 30-40 years the airline industry has generated one of the lowest returns on invested capital among all industries. Without tangible benefits realised, the airline industry may find it difficult to attract the required investment capital and delay acquiring equipment needed to realise the concept of trajectory based operations. In response to these challenges facing the modernisation of ATM, this thesis aims to answer the question whether existing aircraft capabilities can be applied to achieve sufficient trajectory synchronisation and improvements to ground-based trajectory prediction in support of the arrival management process, to realise some of the benefits envisioned under trajectory based operations, and to provide an incentive for further avionics upgrades. The proposed operational concept aims to permit aircraft to operate in a manner consistent with current optimal aircraft operating techniques. It allows aircraft to descend in the fuel efficient path managed mode as preferred by a majority of airlines, with arrival time not actively controlled by the airborne automation. The temporal uncertainty is managed through metering at strategically chosen points along the aircraft’s trajectory with primary use of speed advisories. While the focus is on speed advisories to support all aircraft and different levels of equipage, the concept also constitutes a framework in which advanced avionics as airborne time-of-arrival control can be integrated once this technology is widely available. In addition to managing temporal uncertainty through metering at multiple points, this temporal uncertainty is minimised by improving the supporting trajectory prediction capability. A novel two-stage trajectory prediction process is presented to adequately integrate aircraft trajectory data available through Future Air Navigation Systems (FANS) into the ground-based trajectory predictor. FANS is standard equipment on any wide-body aircraft in production today, and some single-aisle aircraft are easily capable of being fitted with FANS. In addition to automatic position reporting, FANS provides the ability to provide (part of) the reference trajectory held by the aircraft’s Flight Management System (FMS), but this capability has yet been widely overlooked. The two-stage process provides a ‘best of both world’s’ solution to the air-ground synchronisation problem by synchronising with the FMS reference trajectory those dimensions controlled by the guidance mode, and improving on the prediction of the remaining open dimensions by exploiting the high resolution meteorological forecast available to a ground-based system. The two-stage trajectory prediction process was applied to a sample of 438 FANS-equipped Boeing 737-800 flights into Melbourne conducting a continuous descent free from ATC intervention, and can be extrapolated to other types of aircraft. Trajectories predicted through the two-stage approach provided estimated time of arrivals with a 30% reduction in standard deviation of the error compared to estimated time of arrival calculated by the FMS. This improved predicted trajectory can subsequently be used to set the sequence and allocate landing slots. Based on the allocated landing slot, the proposed system calculates a speed schedule for the aircraft to meet this landing slot at minimal flight efficiency impact. A novel algorithm is presented that determines this speed schedule without requiring an iterative process in which multiple calls to a trajectory predictor need to be made. The algorithm is based on parameterisation of the trajectory prediction process, allowing the estimate time of arrival to be represented by a polynomial function of the speed schedule, providing an analytical solution to the speed schedule required to meet a set arrival time. The arrival management solution proposed in this thesis leverages the use of existing avionics and communications systems resulting in new value for industry for current investment. The solution therefore supports a transition concept from mixed equipage towards advanced avionics currently under development. Benefits realised under this transition may provide an incentive for ongoing investment in avionics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses initial efforts to develop a navigation system for ground vehicles supported by visual feedback from a mini aerial vehicle. A visual-based algorithm computes the ground vehicle pose in the world frame, as well as possible obstacles within the ground vehicle pathway. Relying on that information, a navigation and obstacle avoidance system is used to re-plan the ground vehicle trajectory, ensuring an optimal detour. Finally, some experiments are presented employing a unmanned ground vehicle (UGV) and a low cost mini unmanned aerial vehicle (UAV).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sight distance is of major importance for road safety either when designing new roads or analysing the alignment of existing roads. It is essential that available sight distance in roads is long enough for emergency stops or overtaking manoeuvres. Also, it is vital for engineers/researchers that the tools used for that analysis are both powerful and intuitive. Based on ArcGIS, the application to be presented not only performs an exhaustive sight distance calculation, but allows an accurate analysis of 3D alignment, using all new tools, from a Digital Elevation Model and vehicle trajectory. The software has been successfully utilised to analyse several two-lane rural roads in Spain. In addition, the software produces thematic maps representing sight distance in which supplementary information about crashes, traffic flow, speed or design consistency could be included, allowing traffic safety studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyse a class of estimators of the generalized diffusion coefficient for fractional Brownian motion Bt of known Hurst index H, based on weighted functionals of the single time square displacement. We show that for a certain choice of the weight function these functionals possess an ergodic property and thus provide the true, ensemble-averaged, generalized diffusion coefficient to any necessary precision from a single trajectory data, but at expense of a progressively higher experimental resolution. Convergence is fastest around H ? 0.30, a value in the subdiffusive regime.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Improving the knowledge of demand evolution over time is a key aspect in the evaluation of transport policies and in forecasting future investment needs. It becomes even more critical for the case of toll roads, which in recent decades has become an increasingly common device to fund road projects. However, literature regarding demand elasticity estimates in toll roads is sparse and leaves some important aspects to be analyzed in greater detail. In particular, previous research on traffic analysis does not often disaggregate heavy vehicle demand from the total volume, so that the specific behavioral patternsof this traffic segment are not taken into account. Furthermore, GDP is the main socioeconomic variable most commonly chosen to explain road freight traffic growth over time. This paper seeks to determine the variables that better explain the evolution of heavy vehicle demand in toll roads over time. To that end, we present a dynamic panel data methodology aimed at identifying the key socioeconomic variables that explain the behavior of road freight traffic throughout the years. The results show that, despite the usual practice, GDP may not constitute a suitable explanatory variable for heavy vehicle demand. Rather, considering only the GDP of those sectors with a high impact on transport demand, such as construction or industry, leads to more consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period. This is an interesting case in the international context, as road freight demand has experienced an even greater reduction in Spain than elsewhere, since the beginning of the economic crisis in 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tolls have increasingly become a common mechanism to fund road projects in recent decades. Therefore, improving knowledge of demand behavior constitutes a key aspect for stakeholders dealing with the management of toll roads. However, the literature concerning demand elasticity estimates for interurban toll roads is still limited due to their relatively scarce number in the international context. Furthermore, existing research has left some aspects to be investigated, among others, the choice of GDP as the most common socioeconomic variable to explain traffic growth over time. This paper intends to determine the variables that better explain the evolution of light vehicle demand in toll roads throughout the years. To that end, we establish a dynamic panel data methodology aimed at identifying the key socioeconomic variables explaining changes in light vehicle demand over time. The results show that, despite some usefulness, GDP does not constitute the most appropriate explanatory variable, while other parameters such as employment or GDP per capita lead to more stable and consistent results. The methodology is applied to Spanish toll roads for the 1990?2011 period, which constitutes a very interesting case on variations in toll road use, as road demand has experienced a significant decrease since the beginning of the economic crisis in 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual certification partially substitutes by computer simulations the experimental techniques required for rail vehicle certification. In this paper, several works were these techniques were used in the vehicle design and track maintenance processes are presented. Dynamic simulation of multibody systems was used to virtually apply the EN14363 standard to certify the dynamic behaviour of vehicles. The works described are: assessment of a freight bogie design adapted to meter-gauge, assessment of a railway track layout for a subway network, freight bogie design with higher speed and axle load, and processing of the data acquired by a track recording vehicle for track maintenance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aircraft Operators Companies (AOCs) are always willing to keep the cost of a flight as low as possible. These costs could be modelled using a function of the fuel consumption, time of flight and fixed cost (over flight cost, maintenance, etc.). These are strongly dependant on the atmospheric conditions, the presence of winds and the aircraft performance. For this reason, much research effort is being put in the development of numerical and graphical techniques for defining the optimal trajectory. This paper presents a different approach to accommodate AOCs preferences, adding value to their activities, through the development of a tool, called aircraft trajectory simulator. This tool is able to simulate the actual flight of an aircraft with the constraints imposed. The simulator is based on a point mass model of the aircraft. The aim of this paper is to evaluate 3DoF aircraft model errors with BADA data through real data from Flight Data Recorder FDR. Therefore, to validate the proposed simulation tool a comparative analysis of the state variables vector is made between an actual flight and the same flight using the simulator. Finally, an example of a cruise phase is presented, where a conventional levelled flight is compared with a continuous climb flight. The comparison results show the potential benefits of following user-preferred routes for commercial flights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a vision based autonomous landing control approach for unmanned aerial vehicles (UAV). The 3D position of an unmanned helicopter is estimated based on the homographies estimated of a known landmark. The translation and altitude estimation of the helicopter against the helipad position are the only information that is used to control the longitudinal, lateral and descend speeds of the vehicle. The control system approach consists in three Fuzzy controllers to manage the speeds of each 3D axis of the aircraft s coordinate system. The 3D position estimation was proven rst, comparing it with the GPS + IMU data with very good results. The robust of the vision algorithm against occlusions was also tested. The excellent behavior of the Fuzzy control approach using the 3D position estimation based in homographies was proved in an outdoors test using a real unmanned helicopter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitivity analysis has been performed to assess the influence of the inertial properties of railway vehicles on their dynamic behaviour. To do this, 216 dynamic simulations were performed modifying, one at a time, the masses, moments of inertia and heights of the centre of gravity of the carbody, the bogie and the wheelset. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles. After processing the results of these simulations, the analyzed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy for future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the most sensitive inertial properties are the mass and the vertical moment of inertia, and the least sensitive ones the longitudinal and lateral moments of inertia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitivity analysis has been performed to assess the influence of the elastic properties of railway vehicle suspensions on the vehicle dynamic behaviour. To do this, 144 dynamic simulations were performed modifying, one at a time, the stiffness and damping coefficients, of the primary and secondary suspensions. Three values were assigned to each parameter, corresponding to the percentiles 10, 50 and 90 of a data set stored in a database of railway vehicles.After processing the results of these simulations, the analyzed parameters were sorted by increasing influence. It was also found which of these parameters could be estimated with a lesser degree of accuracy in future simulations without appreciably affecting the simulation results. In general terms, it was concluded that the highest influences were found for the longitudinal stiffness and the lateral stiffness of the primary suspension, and the lowest influences for the vertical stiffness and the vertical damping of the primary suspension, with the parameters of the secondary suspension showing intermediate influences between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The road transportation sector is responsible for around 25% of total man-made CO2 emissions worldwide. Considerable efforts are therefore underway to reduce these emissions using several approaches, including improved vehicle technologies, traffic management and changing driving behaviour. Detailed traffic and emissions models are used extensively to assess the potential effects of these measures. However, if the input and calibration data are not sufficiently detailed there is an inherent risk that the results may be inaccurate. This article presents the use of Floating Car Data to derive useful speed and acceleration values in the process of traffic model calibration as a means of ensuring more accurate results when simulating the effects of particular measures. The data acquired includes instantaneous GPS coordinates to track and select the itineraries, and speed and engine performance extracted directly from the on-board diagnostics system. Once the data is processed, the variations in several calibration parameters can be analyzed by comparing the base case model with the measure application scenarios. Depending on the measure, the results show changes of up to 6.4% in maximum speed values, and reductions of nearly 15% in acceleration and braking levels, especially when eco-driving is applied.