35 resultados para laser processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outline: • Introduction • Fundamental Physics of the Laser-Plasma Interaction in Laser Shock Processing • Theoretical/Computational Model Description • Some Results. Analysis of Interaction Parameters • Experimental Validation. Diagnosis Setup • Discussion and Outlook

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light confinement strategies play a crucial role in the performance of thin-film (TF) silicon solar cells. One way to reduce the optical losses is the texturing of the transparent conductive oxide (TCO) that acts as the front contact. Other losses arise from the mismatch between the incident light spectrum and the spectral properties of the absorbent material that imply that low energy photons (below the bandgap value) are not absorbed, and therefore can not generate photocurrent. Up-conversion techniques, in which two sub-bandgap photons are combined to give one photon with a better matching with the bandgap, were proposed to overcome this problem. In particular, this work studies two strategies to improve light management in thin film silicon solar cells using laser technology. The first one addresses the problem of TCO surface texturing using fully commercial fast and ultrafast solid state laser sources. Aluminum doped Zinc Oxide (AZO) samples were laser processed and the results were optically evaluated by measuring the haze factor of the treated samples. As a second strategy, laser annealing experiments of TCOs doped with rare earth ions are presented as a potential process to produce layers with up-conversion properties, opening the possibility of its potential use in high efficiency solar cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laser Welding (LW) is more often used in manufacturing due to its advantages, such as accurate control, good repeatability, less heat input, opportunities for joining of special materials, high speed, capability to join small dimension parts etc. LW is dedicated to robotized manufacturing, and the fabrication cells are using various level of flexibility, from specialized robots to very flexible setups. This paper features several LW applications using two industrially-scaled manufacturing cells at UPM Laser Centre (CLUPM) of Polytechnical University of Madrid (Universidad Politécnica de Madrid). The one dedicated to Remote Laser Welding (RLW) of thin sheets for automotive and other sectors uses a CO2 laser of 3500 W. The second has a high flexibility, is based on a 6-axis ABB robot and a Nd:YAG laser of 3300 W, and is meant for various laser processing methods, including welding. After a short description of each cell, several LW applications experimented at CLUPM and recently implemented in industry are briefly presented: RLW of automotive coated sheets, LW of high strength automotive sheets, LW vs. laser hybrid welding (LHW) of Double Phase steel thin sheets, and LHW of thin sheets of stainless steel and carbon steel (dissimilar joints). The main technological issues overcame and the critical process parameters are pointed out. Conclusions about achievements and trends are provided.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that lasers have helped to increase efficiency and to reduce production costs in the photovoltaic (PV) sector in the last two decades, appearing in most cases as the ideal tool to solve some of the critical bottlenecks of production both in thin film (TF) and crystalline silicon (c-Si) technologies. The accumulated experience in these fields has brought as a consequence the possibility of using laser technology to produce new Building Integrated Photovoltaics (BIPV) products with a high degree of customization. However, to produce efficiently these personalized products it is necessary the development of optimized laser processes able to transform standard products in customized items oriented to the BIPV market. In particular, the production of semitransparencies and/or freeform geometries in TF a-Si modules and standard c-Si modules is an application of great interest in this market. In this work we present results of customization of both TF a-Si modules and standard monocrystalline (m-Si) and policrystalline silicon (pc-Si) modules using laser ablation and laser cutting processes. A discussion about the laser processes parameterization to guarantee the functionality of the device is included. Finally some examples of final devices are presented with a full discussion of the process approach used in their fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a consistent set of results showing the ability of Laser Shock Processing (LSP) in modifying the overall properties of the Friction Stir Welded (FSW) joints made of AA 2024-T351. Based on laser beam intensities above 109 W/cm2 with pulse energies of several Joules and pulses durations of nanoseconds, LSP is able of inducing a compression residual stress field, improving the wear and fatigue resistance by slowing crack propagation and stress corrosion cracking, but also improving the overall behaviour of the structure. After the FSW and LSP procedures are briefly presented, the results of micro-hardness measurements and of transverse tensile tests, together with the corrosion resistance of the native joints vs. LSP treated are discussed. The ability of LSP to generate compressive residual stresses and to improve the behaviour of the FSW joints is underscored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 109 W/cm2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically Al and Ti alloys) under different LSP irradiation conditions are presented. In particular, the analysis of the residual stress profiles obtained under different irradiation parameters and the evaluation of the corresponding induced surface properties as roughness and wear resistance are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Profiting by the increasing availability of laser sources delivering intensities above 10 9 W/cm 2 with pulse energies in the range of several Joules and pulse widths in the range of nanoseconds, laser shock processing (LSP) is being consolidating as an effective technology for the improvement of surface mechanical and corrosion resistance properties of metals and is being developed as a practical process amenable to production engineering. The main acknowledged advantage of the laser shock processing technique consists on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Following a short description of the theoretical/computational and experimental methods developed by the authors for the predictive assessment and experimental implementation of LSP treatments, experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (specifically steels and Al and Ti alloys) under different LSP irradiation conditions are presented

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser Shock Processing is developing as a key technology for the improvement of surface mechanical and corrosion resistance properties of metals due to its ability to introduce intense compressive residual stresses fields into high elastic limit materials by means of an intense laser driven shock wave generated by laser with intensities exceeding the 109 W/cm2 threshold, pulse energies in the range of 1 Joule and interaction times in the range of several ns. However, because of the relatively difficult-to-describe physics of shock wave formation in plasma following laser-matter interaction in solid state, only limited knowledge is available in the way of full comprehension and predictive assessment of the characteristic physical processes and material transformations with a specific consideration of real material properties. In the present paper, an account of the physical issues dominating the development of LSP processes from a moderately high intensity laser-matter interaction point of view is presented along with the theoretical and computational methods developed by the authors for their predictive assessment and new experimental contrast results obtained at laboratory scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies and the evaluation of the corresponding induced properties as material specific volume reduction at the surface, microhardness and wear resistance. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

•Introduction •Process Experimental Setup •Experimental Procedure •Experimental Results for Al2024 - T351, Ti6Al4V and AISI 316L - Surface Roughness and Compactation - Residual stresses - Tensile Strength - Fatigue Life •Discussion and Outlook - Prospects for technological applications of LSP

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyzes the behavior of a neural processing unit based on the optical bistable properties of semiconductor laser amplifiers. A similar unit to the reported here was previously employed in the simulation of the mammalian retina. The main advantages of the present cell are its larger fan-out and the possibility of different responses according to the light wavelength impinging onto the cell. These properties allow to work with larger structures as well as to obtain different behaviors according to the light characteristics. This new approach gives a possible modeling closer to the real biological configurations. Moreover, a more detailed analysis of the basic cell internal behavior is reported

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High Intensity Lasers Application to Advanced Materials Processing: Laser Peening and Related