27 resultados para coaxial cavity resonators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng−1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng−1), due to the lower mass of the CNTelectrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNTelectrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The AlN/diamond structure is an attractive combination for SAW devices and its application at high frequencies. In this work, the synthesis of AlN thin films by reactive sputtering has been optimized on diamond substrates in order to process high frequency devices. Polished microcrystalline and as-grown nanocrystalline diamond substrates have been used to deposit AlN of different thickness under equal sputtering conditions. For the smoother substrates, the FWHM of the rocking curve of the (002) AlN peak varies from 3.8° to 2.7° with increasing power. SAW one port resonators have been fabricated on these films, whose electrical characterization (in terms of S11 parameters) is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear three-dimensional modal instability of steady laminar two-dimensional states developing in a lid-driven cavity of isosceles triangular cross-section is investigated theoretically and experimentally for the case in which the equal sides form a rectangular corner. An asymmetric steady two-dimensional motion is driven by the steady motion of one of the equal sides. If the side moves away from the rectangular corner, a stationary three-dimensional instability is found. If the motion is directed towards the corner, the instability is oscillatory. The respective critical Reynolds numbers are identified both theoretically and experimentally. The neutral curves pertinent to the two configurations and the properties of the respective leading eigenmodes are documented and analogies to instabilities in rectangular lid-driven cavities are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work reported here shows a direct experimental comparison of the sensitivities of AlN solidly mounted resonators (SMR)-based biosensors fabricated with standard metal electrodes and with carbon nanotube electrodes. SMRs resonating at frequencies around 1.75 GHz have been fabricated, some devices using a thin film of multi-wall carbon nanotubes (CNTs) as the top electrode material and some identical devices using a chromium/gold electrode. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode material exhibited higher frequency change for a given load due to the higher active surface area of a thin film of interconnecting CNTs compared to that of a metal thin film electrode and hence exhibited greater mass loading sensitivity. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is viable and worthwhile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the performance of AlN-based bulk acoustic wave resonators built on top of insulating acoustic reflectors and operating at around 8 GHz. The acoustic reflectors are composed of alternate layers of amorphous Ta2O5and SiO2 deposited at room temperature by pulsed-DC reactive sputtering in Ar/O2 atmospheres. SiO2 layers have a porous structure that provides a low acoustic impedance of only 9.5 MRayl. Ta2O5 films exhibit an acoustic impedance of around 39.5 MRayl that was assessed by the picoseconds acoustic technique These values allow to design acoustic mirrors with transmission coefficients in the centre of the band lower than -40 dB (99.998 % of reflectance) with only seven layers. The resonators were fabricated by depositing a very thin AlN film onto an iridium bottom electrode 180 nm-thick and by using Ir or Mo layers as top electrode. Resonators with effective electromechanical coupling factors of 5.7% and quality factors at the antiresonant frequency around 600 are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of AlN on diamond is a great challenge, not only because of the between an AlN/diamond interface, but also because of the high surface roughness of the diamond layers [8, 9]. In the case of microcrystalline diamond, the last problem was solved by polishing. However, polishing nanocrystalline diamond is not straightforward. For the diamond synthesis by CVD, silicon was used as a substrate. The diamond/Si interface presents a smoother diamond than the diamond/air interface. This paper reports on the fabrication of high frequency SAW resonators using AlN/Diamond/Si technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability analysis of open cavity flows is a problem of great interest in the aeronautical industry. This type of flow can appear, for example, in landing gears or auxiliary power unit configurations. Open cavity flows is very sensitive to any change in the configuration, either physical (incoming boundary layer, Reynolds or Mach numbers) or geometrical (length to depth and length to width ratio). In this work, we have focused on the effect of geometry and of the Reynolds number on the stability properties of a threedimensional spanwise periodic cavity flow in the incompressible limit. To that end, BiGlobal analysis is used to investigate the instabilities in this configuration. The basic flow is obtained by the numerical integration of the Navier-Stokes equations with laminar boundary layers imposed upstream. The 3D perturbation, assumed to be periodic in the spanwise direction, is obtained as the solution of the global eigenvalue problem. A parametric study has been performed, analyzing the stability of the flow under variation of the Reynolds number, the L/D ratio of the cavity, and the spanwise wavenumber β. For consistency, multidomain high order numerical schemes have been used in all the computations, either basic flow or eigenvalue problems. The results allow to define the neutral curves in the range of L/D = 1 to L/D = 3. A scaling relating the frequency of the eigenmodes and the length to depth ratio is provided, based on the analysis results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the sputter growth of very thin aluminum nitride (AlN) films on iridium electrodes for electroacoustic devices operating in the super high frequency range. Superior crystal quality and low stress films with thicknesses as low as 160 nm are achieved after a radio frequency plasma treatment of the iridium electrode followed by a two-step alternating current reactive magnetron sputtering of an aluminum target, which promotes better conditions for the nucleation of well textured AlN films in the very first stages of growth. Solidly mounted resonators tuned around 8 GHz with effective electromechanical coupling factors of 5.8% and quality factors Q up to 900 are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe the fabrication and frequency characterization of different structures intended for the lateral excitation of shear modes in AlN c-axis-oriented films, which are at the same time designed to minimize the excitation of longitudinal modes. Laterally excited resonators were built on partially metallic (SiO2, W) and insulating (SiOC, Si3N4) acoustic mirrors built on silicon substrates, and on insulating mirrors (SiO2, TaOx) built on insulating glass plates. TiOx seed layers were used to stimulate the growth of highly c-axis oriented AlN films, which was confirmed by XRD and SAW measurements. Coplanar Mo electrodes of different geometries were defined on top of the AlN films to excite the shear modes. All the structures analyzed displayed a clear longitudinal mode, corresponding to an acoustic velocity of 11000 m/s, but a null or extremely weak shear response corresponding to a sound velocity of around 6350 m/s. The simulation of the frequency response based on Mason's model confirms that the shear resonance is extremely weak. The observed longitudinal modes are attributed either to the field applied between the electrodes and a conductive plane (metallic layer or Si substrate) or to the electric field parallel to the c-axis in the edges of the electrodes or in tilted grains. The low excitation of shear modes is attributed to the very low values of electric field strength parallel to the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of optical bistability in a vertical- cavity semiconductor optical amplifier (VCSOA) operated in reflection are reported. The dependences of the optical bistability in VCSOAs on the initial phase detuning and on the applied bias current are analyzed. The optical bistability is also studied for different numbers of superimposed periods in the top distributed bragg reflector (DBR) that conform the internal cavity of the device. The appearance of the X-bistable and the clockwise bistable loops is predicted theoretically in a VCSOA operated in reflection for the first time, to the best of our knowledge. Moreover, it is also predicted that the control of the VCSOA’s top reflectivity by the addition of new superimposed periods in its top DBR reduces by one order of magnitude the input power needed for the assessment of the X- and the clockwise bistable loop, compared to that required in in-plane semiconductor optical amplifiers. These results, added to the ease of fabricating two-dimensional arrays of this kind of device could be useful for the development of new optical logic or optical signal regeneration devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlN/diamond heterostructures are very promising for high frequency surface acoustic wave (SAW) resonators. In their design, the thickness of the piezoelectric film is one of the key parameters. On the other hand, the film material quality and, hence, the device performance, also depend on that thickness. In this work, polished microcrystalline diamond substrates have been used to deposit AlN films by reactive sputtering, from 150 nm up to 3 μm thick. A high degree of the c-axis orientation has been obtained in all cases. SAW one port resonators at high frequency have been fabricated on these films with a proper combination of the film thickness and transducer size.