17 resultados para Time dependent Ginzburg-Landau equations
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
Relacionado con línea de investigación del GDS del ISOM ver http://www.isom.upm.es/dsemiconductores.php
Resumo:
In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a “heuristic argument” that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper “side-by-side” comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (“time averages”) are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.
Resumo:
The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.
Resumo:
Lagrangian descriptors are a recent technique which reveals geometrical structures in phase space and which are valid for aperiodically time dependent dynamical systems. We discuss a general methodology for constructing them and we discuss a "heuristic argument" that explains why this method is successful. We support this argument by explicit calculations on a benchmark problem. Several other benchmark examples are considered that allow us to assess the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field ("time averages"). In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods.
Resumo:
This paper deals with the dynamics of liquid bridges when subjected to an oscillatory microgravity field. The analysis has been performed by using a one-dimensional slice model, already used in liquid bridge problems, which allows to calculate not only the resonance frequencies of a wide range of such fluid configurations but also the dependence of the dynamic response of the liquid bridge on the frequency on the imposed perturbations. Theoretical results are compared with experimental ones obtained aboard Spacelab-Dl, the agreement between theoretical and experimental results being satisfactory
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
A local proper orthogonal decomposition (POD) plus Galerkin projection method was recently developed to accelerate time dependent numerical solvers of PDEs. This method is based on the combined use of a numerical code (NC) and a Galerkin sys- tem (GS) in a sequence of interspersed time intervals, INC and IGS, respectively. POD is performed on some sets of snapshots calculated by the numerical solver in the INC inter- vals. The governing equations are Galerkin projected onto the most energetic POD modes and the resulting GS is time integrated in the next IGS interval. The major computa- tional e®ort is associated with the snapshots calculation in the ¯rst INC interval, where the POD manifold needs to be completely constructed (it is only updated in subsequent INC intervals, which can thus be quite small). As the POD manifold depends only weakly on the particular values of the parameters of the problem, a suitable library can be con- structed adapting the snapshots calculated in other runs to drastically reduce the size of the ¯rst INC interval and thus the involved computational cost. The strategy is success- fully tested in (i) the one-dimensional complex Ginzburg-Landau equation, including the case in which it exhibits transient chaos, and (ii) the two-dimensional unsteady lid-driven cavity problem
Resumo:
In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations
Resumo:
Se desarrollan varias técnicas basadas en descomposición ortogonal propia (DOP) local y proyección de tipo Galerkin para acelerar la integración numérica de problemas de evolución, de tipo parabólico, no lineales. Las ideas y métodos que se presentan conllevan un nuevo enfoque para la modelización de tipo DOP, que combina intervalos temporales cortos en que se usa un esquema numérico estándard con otros intervalos temporales en que se utilizan los sistemas de tipo Galerkin que resultan de proyectar las ecuaciones de evolución sobre la variedad lineal generada por los modos DOP, obtenidos a partir de instantáneas calculadas en los intervalos donde actúa el código numérico. La variedad DOP se construye completamente en el primer intervalo, pero solamente se actualiza en los demás intervalos según las dinámicas de la solución, aumentando de este modo la eficiencia del modelo de orden reducido resultante. Además, se aprovechan algunas propiedades asociadas a la dependencia débil de los modos DOP tanto en la variable temporal como en los posibles parámetros de que pueda depender el problema. De esta forma, se aumentan la flexibilidad y la eficiencia computacional del proceso. La aplicación de los métodos resultantes es muy prometedora, tanto en la simulación de transitorios en flujos laminares como en la construcción de diagramas de bifurcación en sistemas dependientes de parámetros. Las ideas y los algoritmos desarrollados en la tesis se ilustran en dos problemas test, la ecuación unidimensional compleja de Ginzburg-Landau y el problema bidimensional no estacionario de la cavidad. Abstract Various ideas and methods involving local proper orthogonal decomposition (POD) and Galerkin projection are presented aiming at accelerating the numerical integration of nonlinear time dependent parabolic problems. The proposed methods come from a new approach to the POD-based model reduction procedures, which combines short runs with a given numerical solver and a reduced order model constructed by expanding the solution of the problem into appropriate POD modes, which span a POD manifold, and Galerkin projecting some evolution equations onto that linear manifold. The POD manifold is completely constructed from the outset, but only updated as time proceeds according to the dynamics, which yields an adaptive and flexible procedure. In addition, some properties concerning the weak dependence of the POD modes on time and possible parameters in the problem are exploited in order to increase the flexibility and efficiency of the low dimensional model computation. Application of the developed techniques to the approximation of transients in laminar fluid flows and the simulation of attractors in bifurcation problems shows very promising results. The test problems considered to illustrate the various ideas and check the performance of the algorithms are the onedimensional complex Ginzburg-Landau equation and the two-dimensional unsteady liddriven cavity problem.
Resumo:
We introduce a second order in time modified Lagrange--Galerkin (MLG) method for the time dependent incompressible Navier--Stokes equations. The main ingredient of the new method is the scheme proposed to calculate in a more efficient manner the Galerkin projection of the functions transported along the characteristic curves of the transport operator. We present error estimates for velocity and pressure in the framework of mixed finite elements when either the mini-element or the $P2/P1$ Taylor--Hood element are used.
Resumo:
The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.
Resumo:
This paper analyzes the correlation between the fluctuations of the electrical power generated by the ensemble of 70 DC/AC inverters from a 45.6 MW PV plant. The use of real electrical power time series from a large collection of photovoltaic inverters of a same plant is an impor- tant contribution in the context of models built upon simplified assumptions to overcome the absence of such data. This data set is divided into three different fluctuation categories with a clustering proce- dure which performs correctly with the clearness index and the wavelet variances. Afterwards, the time dependent correlation between the electrical power time series of the inverters is esti- mated with the wavelet transform. The wavelet correlation depends on the distance between the inverters, the wavelet time scales and the daily fluctuation level. Correlation values for time scales below one minute are low without dependence on the daily fluctuation level. For time scales above 20 minutes, positive high correlation values are obtained, and the decay rate with the distance depends on the daily fluctuation level. At intermediate time scales the correlation depends strongly on the daily fluctuation level. The proposed methods have been implemented using free software. Source code is available as supplementary material.
Resumo:
The excitation of Fast Magnetosonic (FMS)waves by a cylindrical array of parallel tethers carrying timemodulated current is discussed. The tethers would fly vertical in the equatorial plane, which is perpendicular to the geomagnetic field when its tilt is ignored, and would be stabilized by the gravity gradient. The tether array would radiate a single FMS wave. In the time-dependent background made of geomagnetic field plus radiated wave, plasma FMS perturbations are excited in the array vicinity through a parametric instability. The growth rate is estimated by truncating the evolution equation for FMS perturbations to the two azimuthal modes of lowest order. Design parameters such as tether length and number, required power and mass are discussed for Low Earth Orbit conditions. The array-attached wave structure would have the radiated wave controlled by the intensity and modulation frequency of the currents, making an active experiment on non-linear low frequency waves possible in real space plasma conditions.
Resumo:
Un escenario habitualmente considerado para el uso sostenible y prolongado de la energía nuclear contempla un parque de reactores rápidos refrigerados por metales líquidos (LMFR) dedicados al reciclado de Pu y la transmutación de actínidos minoritarios (MA). Otra opción es combinar dichos reactores con algunos sistemas subcríticos asistidos por acelerador (ADS), exclusivamente destinados a la eliminación de MA. El diseño y licenciamiento de estos reactores innovadores requiere herramientas computacionales prácticas y precisas, que incorporen el conocimiento obtenido en la investigación experimental de nuevas configuraciones de reactores, materiales y sistemas. A pesar de que se han construido y operado un cierto número de reactores rápidos a nivel mundial, la experiencia operacional es todavía reducida y no todos los transitorios se han podido entender completamente. Por tanto, los análisis de seguridad de nuevos LMFR están basados fundamentalmente en métodos deterministas, al contrario que las aproximaciones modernas para reactores de agua ligera (LWR), que se benefician también de los métodos probabilistas. La aproximación más usada en los estudios de seguridad de LMFR es utilizar una variedad de códigos, desarrollados a base de distintas teorías, en busca de soluciones integrales para los transitorios e incluyendo incertidumbres. En este marco, los nuevos códigos para cálculos de mejor estimación ("best estimate") que no incluyen aproximaciones conservadoras, son de una importancia primordial para analizar estacionarios y transitorios en reactores rápidos. Esta tesis se centra en el desarrollo de un código acoplado para realizar análisis realistas en reactores rápidos críticos aplicando el método de Monte Carlo. Hoy en día, dado el mayor potencial de recursos computacionales, los códigos de transporte neutrónico por Monte Carlo se pueden usar de manera práctica para realizar cálculos detallados de núcleos completos, incluso de elevada heterogeneidad material. Además, los códigos de Monte Carlo se toman normalmente como referencia para los códigos deterministas de difusión en multigrupos en aplicaciones con reactores rápidos, porque usan secciones eficaces punto a punto, un modelo geométrico exacto y tienen en cuenta intrínsecamente la dependencia angular de flujo. En esta tesis se presenta una metodología de acoplamiento entre el conocido código MCNP, que calcula la generación de potencia en el reactor, y el código de termohidráulica de subcanal COBRA-IV, que obtiene las distribuciones de temperatura y densidad en el sistema. COBRA-IV es un código apropiado para aplicaciones en reactores rápidos ya que ha sido validado con resultados experimentales en haces de barras con sodio, incluyendo las correlaciones más apropiadas para metales líquidos. En una primera fase de la tesis, ambos códigos se han acoplado en estado estacionario utilizando un método iterativo con intercambio de archivos externos. El principal problema en el acoplamiento neutrónico y termohidráulico en estacionario con códigos de Monte Carlo es la manipulación de las secciones eficaces para tener en cuenta el ensanchamiento Doppler cuando la temperatura del combustible aumenta. Entre todas las opciones disponibles, en esta tesis se ha escogido la aproximación de pseudo materiales, y se ha comprobado que proporciona resultados aceptables en su aplicación con reactores rápidos. Por otro lado, los cambios geométricos originados por grandes gradientes de temperatura en el núcleo de reactores rápidos resultan importantes para la neutrónica como consecuencia del elevado recorrido libre medio del neutrón en estos sistemas. Por tanto, se ha desarrollado un módulo adicional que simula la geometría del reactor en caliente y permite estimar la reactividad debido a la expansión del núcleo en un transitorio. éste módulo calcula automáticamente la longitud del combustible, el radio de la vaina, la separación de los elementos de combustible y el radio de la placa soporte en función de la temperatura. éste efecto es muy relevante en transitorios sin inserción de bancos de parada. También relacionado con los cambios geométricos, se ha implementado una herramienta que, automatiza el movimiento de las barras de control en busca d la criticidad del reactor, o bien calcula el valor de inserción axial las barras de control. Una segunda fase en la plataforma de cálculo que se ha desarrollado es la simulació dinámica. Puesto que MCNP sólo realiza cálculos estacionarios para sistemas críticos o supercríticos, la solución más directa que se propone sin modificar el código fuente de MCNP es usar la aproximación de factorización de flujo, que resuelve por separado la forma del flujo y la amplitud. En este caso se han estudiado en profundidad dos aproximaciones: adiabática y quasiestática. El método adiabático usa un esquema de acoplamiento que alterna en el tiempo los cálculos neutrónicos y termohidráulicos. MCNP calcula el modo fundamental de la distribución de neutrones y la reactividad al final de cada paso de tiempo, y COBRA-IV calcula las propiedades térmicas en el punto intermedio de los pasos de tiempo. La evolución de la amplitud de flujo se calcula resolviendo las ecuaciones de cinética puntual. Este método calcula la reactividad estática en cada paso de tiempo que, en general, difiere de la reactividad dinámica que se obtendría con la distribución de flujo exacta y dependiente de tiempo. No obstante, para entornos no excesivamente alejados de la criticidad ambas reactividades son similares y el método conduce a resultados prácticos aceptables. Siguiendo esta línea, se ha desarrollado después un método mejorado para intentar tener en cuenta el efecto de la fuente de neutrones retardados en la evolución de la forma del flujo durante el transitorio. El esquema consiste en realizar un cálculo cuasiestacionario por cada paso de tiempo con MCNP. La simulación cuasiestacionaria se basa EN la aproximación de fuente constante de neutrones retardados, y consiste en dar un determinado peso o importancia a cada ciclo computacial del cálculo de criticidad con MCNP para la estimación del flujo final. Ambos métodos se han verificado tomando como referencia los resultados del código de difusión COBAYA3 frente a un ejercicio común y suficientemente significativo. Finalmente, con objeto de demostrar la posibilidad de uso práctico del código, se ha simulado un transitorio en el concepto de reactor crítico en fase de diseño MYRRHA/FASTEF, de 100 MW de potencia térmica y refrigerado por plomo-bismuto. ABSTRACT Long term sustainable nuclear energy scenarios envisage a fleet of Liquid Metal Fast Reactors (LMFR) for the Pu recycling and minor actinides (MAs) transmutation or combined with some accelerator driven systems (ADS) just for MAs elimination. Design and licensing of these innovative reactor concepts require accurate computational tools, implementing the knowledge obtained in experimental research for new reactor configurations, materials and associated systems. Although a number of fast reactor systems have already been built, the operational experience is still reduced, especially for lead reactors, and not all the transients are fully understood. The safety analysis approach for LMFR is therefore based only on deterministic methods, different from modern approach for Light Water Reactors (LWR) which also benefit from probabilistic methods. Usually, the approach adopted in LMFR safety assessments is to employ a variety of codes, somewhat different for the each other, to analyze transients looking for a comprehensive solution and including uncertainties. In this frame, new best estimate simulation codes are of prime importance in order to analyze fast reactors steady state and transients. This thesis is focused on the development of a coupled code system for best estimate analysis in fast critical reactor. Currently due to the increase in the computational resources, Monte Carlo methods for neutrons transport can be used for detailed full core calculations. Furthermore, Monte Carlo codes are usually taken as reference for deterministic diffusion multigroups codes in fast reactors applications because they employ point-wise cross sections in an exact geometry model and intrinsically account for directional dependence of the ux. The coupling methodology presented here uses MCNP to calculate the power deposition within the reactor. The subchannel code COBRA-IV calculates the temperature and density distribution within the reactor. COBRA-IV is suitable for fast reactors applications because it has been validated against experimental results in sodium rod bundles. The proper correlations for liquid metal applications have been added to the thermal-hydraulics program. Both codes are coupled at steady state using an iterative method and external files exchange. The main issue in the Monte Carlo/thermal-hydraulics steady state coupling is the cross section handling to take into account Doppler broadening when temperature rises. Among every available options, the pseudo materials approach has been chosen in this thesis. This approach obtains reasonable results in fast reactor applications. Furthermore, geometrical changes caused by large temperature gradients in the core, are of major importance in fast reactor due to the large neutron mean free path. An additional module has therefore been included in order to simulate the reactor geometry in hot state or to estimate the reactivity due to core expansion in a transient. The module automatically calculates the fuel length, cladding radius, fuel assembly pitch and diagrid radius with the temperature. This effect will be crucial in some unprotected transients. Also related to geometrical changes, an automatic control rod movement feature has been implemented in order to achieve a just critical reactor or to calculate control rod worth. A step forward in the coupling platform is the dynamic simulation. Since MCNP performs only steady state calculations for critical systems, the more straight forward option without modifying MCNP source code, is to use the flux factorization approach solving separately the flux shape and amplitude. In this thesis two options have been studied to tackle time dependent neutronic simulations using a Monte Carlo code: adiabatic and quasistatic methods. The adiabatic methods uses a staggered time coupling scheme for the time advance of neutronics and the thermal-hydraulics calculations. MCNP computes the fundamental mode of the neutron flux distribution and the reactivity at the end of each time step and COBRA-IV the thermal properties at half of the the time steps. To calculate the flux amplitude evolution a solver of the point kinetics equations is used. This method calculates the static reactivity in each time step that in general is different from the dynamic reactivity calculated with the exact flux distribution. Nevertheless, for close to critical situations, both reactivities are similar and the method leads to acceptable practical results. In this line, an improved method as an attempt to take into account the effect of delayed neutron source in the transient flux shape evolutions is developed. The scheme performs a quasistationary calculation per time step with MCNP. This quasistationary simulations is based con the constant delayed source approach, taking into account the importance of each criticality cycle in the final flux estimation. Both adiabatic and quasistatic methods have been verified against the diffusion code COBAYA3, using a theoretical kinetic exercise. Finally, a transient in a critical 100 MWth lead-bismuth-eutectic reactor concept is analyzed using the adiabatic method as an application example in a real system.