23 resultados para Thermal dissipation method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La fiabilidad está pasando a ser el principal problema de los circuitos integrados según la tecnología desciende por debajo de los 22nm. Pequeñas imperfecciones en la fabricación de los dispositivos dan lugar ahora a importantes diferencias aleatorias en sus características eléctricas, que han de ser tenidas en cuenta durante la fase de diseño. Los nuevos procesos y materiales requeridos para la fabricación de dispositivos de dimensiones tan reducidas están dando lugar a diferentes efectos que resultan finalmente en un incremento del consumo estático, o una mayor vulnerabilidad frente a radiación. Las memorias SRAM son ya la parte más vulnerable de un sistema electrónico, no solo por representar más de la mitad del área de los SoCs y microprocesadores actuales, sino también porque las variaciones de proceso les afectan de forma crítica, donde el fallo de una única célula afecta a la memoria entera. Esta tesis aborda los diferentes retos que presenta el diseño de memorias SRAM en las tecnologías más pequeñas. En un escenario de aumento de la variabilidad, se consideran problemas como el consumo de energía, el diseño teniendo en cuenta efectos de la tecnología a bajo nivel o el endurecimiento frente a radiación. En primer lugar, dado el aumento de la variabilidad de los dispositivos pertenecientes a los nodos tecnológicos más pequeños, así como a la aparición de nuevas fuentes de variabilidad por la inclusión de nuevos dispositivos y la reducción de sus dimensiones, la precisión del modelado de dicha variabilidad es crucial. Se propone en la tesis extender el método de inyectores, que modela la variabilidad a nivel de circuito, abstrayendo sus causas físicas, añadiendo dos nuevas fuentes para modelar la pendiente sub-umbral y el DIBL, de creciente importancia en la tecnología FinFET. Los dos nuevos inyectores propuestos incrementan la exactitud de figuras de mérito a diferentes niveles de abstracción del diseño electrónico: a nivel de transistor, de puerta y de circuito. El error cuadrático medio al simular métricas de estabilidad y prestaciones de células SRAM se reduce un mínimo de 1,5 veces y hasta un máximo de 7,5 a la vez que la estimación de la probabilidad de fallo se mejora en varios ordenes de magnitud. El diseño para bajo consumo es una de las principales aplicaciones actuales dada la creciente importancia de los dispositivos móviles dependientes de baterías. Es igualmente necesario debido a las importantes densidades de potencia en los sistemas actuales, con el fin de reducir su disipación térmica y sus consecuencias en cuanto al envejecimiento. El método tradicional de reducir la tensión de alimentación para reducir el consumo es problemático en el caso de las memorias SRAM dado el creciente impacto de la variabilidad a bajas tensiones. Se propone el diseño de una célula que usa valores negativos en la bit-line para reducir los fallos de escritura según se reduce la tensión de alimentación principal. A pesar de usar una segunda fuente de alimentación para la tensión negativa en la bit-line, el diseño propuesto consigue reducir el consumo hasta en un 20 % comparado con una célula convencional. Una nueva métrica, el hold trip point se ha propuesto para prevenir nuevos tipos de fallo debidos al uso de tensiones negativas, así como un método alternativo para estimar la velocidad de lectura, reduciendo el número de simulaciones necesarias. Según continúa la reducción del tamaño de los dispositivos electrónicos, se incluyen nuevos mecanismos que permiten facilitar el proceso de fabricación, o alcanzar las prestaciones requeridas para cada nueva generación tecnológica. Se puede citar como ejemplo el estrés compresivo o extensivo aplicado a los fins en tecnologías FinFET, que altera la movilidad de los transistores fabricados a partir de dichos fins. Los efectos de estos mecanismos dependen mucho del layout, la posición de unos transistores afecta a los transistores colindantes y pudiendo ser el efecto diferente en diferentes tipos de transistores. Se propone el uso de una célula SRAM complementaria que utiliza dispositivos pMOS en los transistores de paso, así reduciendo la longitud de los fins de los transistores nMOS y alargando los de los pMOS, extendiéndolos a las células vecinas y hasta los límites de la matriz de células. Considerando los efectos del STI y estresores de SiGe, el diseño propuesto mejora los dos tipos de transistores, mejorando las prestaciones de la célula SRAM complementaria en más de un 10% para una misma probabilidad de fallo y un mismo consumo estático, sin que se requiera aumentar el área. Finalmente, la radiación ha sido un problema recurrente en la electrónica para aplicaciones espaciales, pero la reducción de las corrientes y tensiones de los dispositivos actuales los está volviendo vulnerables al ruido generado por radiación, incluso a nivel de suelo. Pese a que tecnologías como SOI o FinFET reducen la cantidad de energía colectada por el circuito durante el impacto de una partícula, las importantes variaciones de proceso en los nodos más pequeños va a afectar su inmunidad frente a la radiación. Se demuestra que los errores inducidos por radiación pueden aumentar hasta en un 40 % en el nodo de 7nm cuando se consideran las variaciones de proceso, comparado con el caso nominal. Este incremento es de una magnitud mayor que la mejora obtenida mediante el diseño de células de memoria específicamente endurecidas frente a radiación, sugiriendo que la reducción de la variabilidad representaría una mayor mejora. ABSTRACT Reliability is becoming the main concern on integrated circuit as the technology goes beyond 22nm. Small imperfections in the device manufacturing result now in important random differences of the devices at electrical level which must be dealt with during the design. New processes and materials, required to allow the fabrication of the extremely short devices, are making new effects appear resulting ultimately on increased static power consumption, or higher vulnerability to radiation SRAMs have become the most vulnerable part of electronic systems, not only they account for more than half of the chip area of nowadays SoCs and microprocessors, but they are critical as soon as different variation sources are regarded, with failures in a single cell making the whole memory fail. This thesis addresses the different challenges that SRAM design has in the smallest technologies. In a common scenario of increasing variability, issues like energy consumption, design aware of the technology and radiation hardening are considered. First, given the increasing magnitude of device variability in the smallest nodes, as well as new sources of variability appearing as a consequence of new devices and shortened lengths, an accurate modeling of the variability is crucial. We propose to extend the injectors method that models variability at circuit level, abstracting its physical sources, to better model sub-threshold slope and drain induced barrier lowering that are gaining importance in FinFET technology. The two new proposed injectors bring an increased accuracy of figures of merit at different abstraction levels of electronic design, at transistor, gate and circuit levels. The mean square error estimating performance and stability metrics of SRAM cells is reduced by at least 1.5 and up to 7.5 while the yield estimation is improved by orders of magnitude. Low power design is a major constraint given the high-growing market of mobile devices that run on battery. It is also relevant because of the increased power densities of nowadays systems, in order to reduce the thermal dissipation and its impact on aging. The traditional approach of reducing the voltage to lower the energy consumption if challenging in the case of SRAMs given the increased impact of process variations at low voltage supplies. We propose a cell design that makes use of negative bit-line write-assist to overcome write failures as the main supply voltage is lowered. Despite using a second power source for the negative bit-line, the design achieves an energy reduction up to 20% compared to a conventional cell. A new metric, the hold trip point has been introduced to deal with new sources of failures to cells using a negative bit-line voltage, as well as an alternative method to estimate cell speed, requiring less simulations. With the continuous reduction of device sizes, new mechanisms need to be included to ease the fabrication process and to meet the performance targets of the successive nodes. As example we can consider the compressive or tensile strains included in FinFET technology, that alter the mobility of the transistors made out of the concerned fins. The effects of these mechanisms are very dependent on the layout, with transistor being affected by their neighbors, and different types of transistors being affected in a different way. We propose to use complementary SRAM cells with pMOS pass-gates in order to reduce the fin length of nMOS devices and achieve long uncut fins for the pMOS devices when the cell is included in its corresponding array. Once Shallow Trench isolation and SiGe stressors are considered the proposed design improves both kinds of transistor, boosting the performance of complementary SRAM cells by more than 10% for a same failure probability and static power consumption, with no area overhead. While radiation has been a traditional concern in space electronics, the small currents and voltages used in the latest nodes are making them more vulnerable to radiation-induced transient noise, even at ground level. Even if SOI or FinFET technologies reduce the amount of energy transferred from the striking particle to the circuit, the important process variation that the smallest nodes will present will affect their radiation hardening capabilities. We demonstrate that process variations can increase the radiation-induced error rate by up to 40% in the 7nm node compared to the nominal case. This increase is higher than the improvement achieved by radiation-hardened cells suggesting that the reduction of process variations would bring a higher improvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Si Nanowires (NWs) were studied by Raman microspectroscopy. The Raman spectrum of the NWs reveals important thermal effects, which broaden and shift the one phonon Raman bands. The low thermal conductivity of the NWs and the low thermal dissipation are responsible for the temperature enhancement in the NW under the excitation with the laser beam. We have modeled, using finite element methods, the interaction between the laser beam and the NWs. The Raman spectrum of Si NWs is interpreted in terms of the temperature induced by the laser beam excitation, in correlation with finite element methods (fem) for studying the interaction between the laser beam and the NWs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a thermal separation method, distillation is one of the most important technologies in the chemical industry. Given its importance, it is no surprise that increasing efforts have been made in reducing its energy inefficiencies. A great deal of research is focused in the design and optimization of the Divided-Wall Column. Its applications are still reduced due to distrust of its controllability. Previous references studied the decentralized control of DWC but still few papers deal about Model Predictive Control. In this work we present a decentralized control of both a DWC column along with its equivalent MPC schema.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sunrise is a solar telescope, successfully flown in June 2009 with a long duration balloon from the Swedish Space Corporation Esrange launch site. The design of the thermal control of SUNRISE was quite critical because of the sensitivity to temperature of the optomechanical devices and the electronics. These problems got more complicated due the size and high power dissipation of the system. A detailed thermal mathematical model of SUNRISE was set up to predict temperatures. In this communication the thermal behaviour of SUNRISE during flight is presented. Flight temperatures of some devices are presented and analysed. The measured data have been compared with the predictions given by the thermal mathematical models. The main discrepancies between flight data and the temperatures predicted by the models have been identified. This allows thermal engineers to improve the knowledge of the thermal behaviour of the system for future missions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A linear method is developed for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. This method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. This method is applied to a minimal thermal model of a satellite with ten isothermal parts (nodes), and the method is compared with direct numerical integration of the nonlinear equations. The computational complexity of this method is briefly studied for general thermal models of orbiting spacecraft, and it is concluded that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the experiences using remote laboratories for thorough analysis of a thermal system, including disturbances. Remote laboratories for education in subjects of control, is a common resorted method, used by universities. This method is applied to offer a flexible service in schedules so as to obtain greater and better results of available resources. Remote laboratories have been used for controlling physical devices remotely. Furthermore, remote labs have been used for transfer function identification of real equipment. Nevertheless, remote analyses of disturbances have not been done. The aim of this contribution is thereby to apply the experience of remote laboratories in the study of disturbances. Some experiments are carried out to demonstrate the effectiveness in using remote laboratories for complete analysis of a thermal system. Considering the remote access to thermal system, “Sistema de Laboratorios a Distancia” (SLD) was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se investiga de forma experimental el transporte pasivo de magnitudes físicas en micro-sistemas con carácter de inmediata aplicación industrial, usando métodos innovadores para mejorar la eficiencia de los mismos optimizando parámetros críticos del diseño o encontrar nuevos destinos de posible aplicación. Parte de los resultados obtenidos en estos experimentos han sido publicados en revistas con un índice de impacto tal que pertenecen al primer cuarto del JCR. Primero de todo se ha analizado el efecto que produce en un intercambiador de calor basado en micro-canales el hecho de dejar un espacio entre canales y tapa superior para la interconexión de los mismos. Esto genera efectos tridimensionales que mejoran la exracción de calor del intercambiador y reducen la caída de presión que aparece por el transcurso del fluido a través de los micro-canales, lo que tiene un gran impacto en la potencia que ha de suministrar la bomba de refrigerante. Se ha analizado también la mejora producida en términos de calor disipado de un micro-procesador refrigerado con un ampliamente usado plato de aletas al implementar en éste una cámara de vapor que almacena un fluido bifásico. Se ha desarrollado de forma paralela un modelo numérico para optimizar las nuevas dimensiones del plato de aletas modificado compatibles con una serie de requerimientos de diseño en el que tanto las dimensiones como el peso juegan un papel esencial. Por otro lado, se han estudiado los fenomenos fluido-dinámicos que aparecen aguas abajo de un cuerpo romo en el seno de un fluido fluyendo por un canal con una alta relación de bloqueo. Los resultados de este estudio confirman, de forma experimental, la existencia de un régimen intermedio, caracterizado por el desarrollo de una burbuja de recirculación oscilante entre los regímenes, bien diferenciados, de burbuja de recirculación estacionaria y calle de torbellinos de Karman, como función del número de Reynolds del flujo incidente. Para la obtención, análisis y post-proceso de los datos, se ha contado con la ayuda de un sistema de Velocimetría por Imágenes de Partículas (PIV). Finalmente y como adición a este último punto, se ha estudiado las vibraciones de un cuerpo romo producidas por el desprendimiento de torbellinos en un canal de alta relación de bloqueo con la base obtenida del estudio anterior. El prisma se mueve con un movimiento armónico simple para un intervalo de números de Reynolds y este movimiento se transforma en vibración alrededor de su eje a partir de un ciero número de Reynolds. En relación al fluido, el régimen de desprendimiento de torbellinos se alcanza a menores números de Reynolds que en el caso de tener el cuerpo romo fijo. Uniendo estos dos registros de movimientos y variando la relación de masas entre prisma y fluido se obtiene un mapa con diferentes estados globales del sistema. Esto no solo tiene aplicación como método para promover el mezclado sino también como método para obtener energía a partir del movimiento del cuerpo en el seno del fluido. Abstract In this thesis, experimental research focused on passive scalar transport is performed in micro-systems with marked sense of industrial application, using innovative methods in order to obtain better performances optimizing critical design parameters or finding new utilities. Part of the results obtained in these experiments have been published into high impact factor journals belonged to the first quarter of the Journal Citation Reports (JCR). First of all the effect of tip clearance in a micro-channel based heat sink is analyzed. Leaving a gap between channels and top cover, letting the channels communicate each other causes three-dimensional effects which improve the heat transfer between fluid and heat sink and also reducing the pressure drop caused by the fluid passing through the micro-channels which has a great impact on the total cooling pumping power needed. It is also analyzed the enhancement produced in terms of dissipated heat in a micro-processor cooling system by improving the predominantly used fin plate with a vapour chamber based heat spreader which contains a two-phase fluid inside. It has also been developed at the same time a numerical model to optimize the new fin plate dimensions compatible with a series of design requirements in which both size and wight plays a very restrictive role. On the other hand, fluid-dynamics phenomena that appears downstream of a bluff body in the bosom of a fluid flow with high blockage ratio has been studied. This research experimentally confirms the existence of an intermediate regime characterized by an oscillating closed recirculation bubble intermediate regime between the steady closed recirculation bubble regime and the vortex shedding regime (Karman street like regime) as a function of the incoming flow Reynolds number. A particle image velocimetry technique (PIV) has been used in order to obtain, analyze and post-process the fluid-dynamic data. Finally and as an addition to the last point, a study on the vortexinduced vibrations (VIV) of a bluff body inside a high blockage ratio channel has been carried out taking advantage of the results obtained with the fixed square prism. The prism moves with simple harmonic motion for a Reynolds number interval and this movement becomes vibrational around its axial axis after overcoming at definite Reynolds number. Regarding the fluid, vortex shedding regime is reached at Reynolds numbers lower than the previous critical ones. Merging both movement spectra and varying the square prism to fluid mass ratio, a map with different global states is reached. This is not only applicable as a mixing enhancement technique but as an energy harvesting method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bankability of CPV projects is an important issue to pave the way toward a swift and sustained growth in this technology. The bankability of a PV plant is generally addressed through the modeling of its energy yield under a b aseline loss scenario, followed by an on-site measurement campaign aimed at verifying its energetic behavior. The main difference between PV and CPV resides in the proper CPV modules, in particular in the inclusion of optical lements and III-V multijunction cells that are much more sensitive to spectral variations than xSi cells, while the rest of the system behaves in a way that possesses many common points with xSi technology. The modeling of the DC power output of a CPV system thus requires several impo rtant second order parameters to be considered, mainly related to optics, spectral direct solar radiation, wind speed, tracker accuracy and heat dissipation of cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El interés por los sistemas fotovoltaicos de concentración (CPV) ha resurgido en los últimos años amparado por el desarrollo de células multiunión de muy alta eficiencia basadas en semiconductores de los grupos III-V. Estas células han permitido obtener módulos de concentración con eficiencias que prácticamente duplican las del panel plano y que llegan al 35% en los módulos récord. Esta tesis está dedicada al diseño y la implementación experimental de nuevos conceptos que permitan obtener módulos CPV que no sólo alcancen una eficiencia alta en condiciones estándar sino que, además, sean lo suficientemente tolerantes a errores de montaje, seguimiento, temperatura y variaciones espectrales para que la energía que producen a lo largo del año sea máxima. Una de las primeras cuestiones que se abordan es el diseño de elementos ópticos secundarios para sistemas cuyo primario es una lente de Fresnel y que permiten, para una concentración fija, aumentar el ángulo de aceptancia y la tolerancia del sistema. Varios secundarios reflexivos y refractivos han sido diseñados y analizados mediante trazado de rayos. En particular, utilizando óptica anidólica y basándose en el diseño de una sola etapa conocido como ‘concentrador dieléctrico que funciona por reflexión total interna‘, se ha diseñado, fabricado y caracterizado un secundario con salida cuadrada que, usado junto con una lente de Fresnel, permite alcanzar simultáneamente una elevada eficiencia, concentración y aceptancia. Además, se ha propuesto y prototipado un método alternativo de fabricación para otro de los secundarios, denominado domo, consistente en el sobremoldeo de silicona sobre células solares. Una de las características que impregna todo el trabajo realizado en esta tesis es la aproximación holística en el diseño de módulos CPV, es decir, se ha prestado especial atención al diseño conjunto de la célula y la óptica para garantizar que el sistema total alcance la mayor eficiencia posible. En este sentido muchos sistemas ópticos desarrollados en esta tesis han sido diseñados, caracterizados y optimizados teniendo en cuenta que el ajuste de corriente entre las distintas subcélulas que comprenden la célula multiunión bajo el concentrador sea muy próximo a uno. La capa antirreflectante sobre la célula funciona, en cierto modo, como interfaz entre la óptica y la célula, por lo que se ha diseñado un método de optimización de capas antirreflectantes que considera no sólo el amplio rango de longitudes de onda para el que las células multiunión son sensibles sino también la distribución angular de intensidad sobre la célula creada por la óptica de concentración. Además, la cuestión de la falta de uniformidad también se ha abordado mediante la comparación de las distribuciones espectrales y espaciales de irradiancia que crean diferentes ópticas (simuladas mediante trazado de rayos y fotografiadas) y las pérdidas de eficiencia que experimentan las células iluminadas por dichas ópticas de concentración medidas experimentalmente. El efecto de la temperatura en la óptica de concentración también ha sido objeto de estudio de esta tesis. En particular, mediante simulaciones de elementos finitos se han dado los primeros pasos para el análisis de las deformaciones que sufren los dientes de las lentes de Fresnel híbridas (vidrio-silicona), así como el cambio de índice de refracción con la temperatura y la influencia de ambos efectos sobre el funcionamiento de los sistemas. Se ha implementado un modelo que tiene por objeto considerar las variaciones ambientales, principalmente temperatura y contenido espectral de la radiación directa, así como las sensibilidades térmica y espectral de los sistemas CPV, con el fin de maximizar la energía producida por un módulo de concentración a lo largo de un año en un emplazamiento determinado. Los capítulos 5 y 6 de este libro están dedicados al diseño, fabricación y caracterización de un nuevo concepto de módulo fotovoltaico denominado FluidReflex y basado en una única etapa reflexiva con dieléctrico fluido. En este nuevo concepto la presencia del fluido aporta algunas ventajas significativas como son: un aumento del producto concentración por aceptancia (CAP, en sus siglas en inglés) alcanzable al rodear la célula con un medio cuyo índice de refracción es mayor que uno, una mejora de la eficiencia óptica al disminuir las pérdidas por reflexión de Fresnel en varias interfaces, una mejora de la disipación térmica ya que el calor que se concentra junto a la célula se trasmite por convección natural y conducción en el fluido y un aislamiento eléctrico mejorado. Mediante la construcción y medida de varios prototipos de unidad elemental se ha demostrado que no existe ninguna razón fundamental que impida la implementación práctica del concepto teórico alcanzando una elevada eficiencia. Se ha realizado un análisis de fluidos candidatos probando la existencia de al menos dos de ellos que cumplen todos los requisitos (en particular el de estabilidad bajo condiciones de luz concentrada) para formar parte del sistema de concentración FluidReflex. Por ´ultimo, se han diseñado, fabricado y caracterizado varios prototipos preindustriales de módulos FluidReflex para lo cual ha sido necesario optimizar el proceso de fabricación de la óptica multicavidad a fin de mantener el buen comportamiento óptico obtenido en la fabricación de la unidad elemental. Los distintos prototipos han sido medidos, tanto en el laboratorio como bajo el sol real, analizando el ajuste de corriente de la célula iluminada por el concentrador FluidReflex bajo diferentes distribuciones espectrales de la radiación incidente así como el excelente comportamiento térmico del módulo. ABSTRACT A renewed interest in concentrating photovoltaic (CPV) systems has emerged in recent years encouraged by the development of high-efficiency multijunction solar cells based in IIIV semiconductors that have led to CPV module efficiencies which practically double that of flat panel PV and which reach 35% for record modules. This thesis is devoted to the design and experimental implementation of new concepts for obtaining CPV modules that not only achieve high efficiency under standard conditions but also have such a wide tolerance to assembly errors, tracking, temperature and spectral variations, that the energy generated by them throughout the year is maximized. One of the first addressed issues is the design of secondary optical elements whose primary optics is a Fresnel lens and which, for a fixed concentration, allow an increased acceptance angle and tolerance of the system. Several reflective and refractive secondaries have been designed and analyzed using ray tracing. In particular, using nonimaging optics and based on the single-stage design known as ‘dielectric totally internally reflecting concentrator’, a secondary with square output has been designed, fabricated and characterized. Used together with a Fresnel lens, the secondary can simultaneously achieve high efficiency, concentration and acceptance. Furthermore, an alternative method has been proposed and prototyped for the fabrication of the secondary named dome. The optics is manufactured by direct overmolding of silicone over the solar cells. One characteristic that permeates all the work done in this thesis is the holistic approach in the design of CPV modules, meaning that special attention has been paid to the joint design of the solar cell and the optics to ensure that the total system achieves the highest attainable efficiency. In this regard, many optical systems developed in the thesis have been designed, characterized and optimized considering that the current matching among the subcells within the multijunction solar cell beneath the optics must be close to one. Antireflective coating over the cell acts, somehow, as an interface between the optics and the cell. Consequently, a method has been designed to optimize antireflective coatings that takes into account not only the broad wavelength range that multijunction solar cells are sensitive to but also the angular intensity distribution created by the concentrating optics. In addition, the issue of non-uniformity has also been addressed by comparing the spectral and spatial distributions of irradiance created by different optics (simulated by ray tracing and photographed) and the efficiency losses experienced by cells illuminated by those concentrating optics experimentally determined. The effect of temperature on the concentrating optics has also been studied in this thesis. In particular, finite element simulations have been use to analyze the deformations experienced by the facets of hybrid (silicon-glass) Fresnel lenses, the change of refractive index with temperature and the influence of both effects on the system performance. A model has been implemented which take into consideration atmospheric variations, mainly temperature and spectral content of the direct normal irradiance, as well as thermal and spectral sensitivities of systems, with the aim of maximizing the energy harvested by a CPV module throughout the year in a particular location. Chapters 5 and 6 of this book are devoted to the design, fabrication, and characterization of a new concentrator concept named FluidReflex and based on a single-stage reflective optics with fluid dielectric. In this new concept, the presence of the fluid provides some significant advantages such as: an increased concentration acceptance angle product (CAP) achievable by surrounding the cell with a medium whose refractive index is greater than one, an improvement of the optical efficiency by reducing losses due to Fresnel reflection at several interfaces, an improvement in heat dissipation as the heat concentrated near the cell is transmitted by natural convection and conduction in the fluid, and an improved electrical insulation. By fabricating and characterizing several elementary-unit prototypes it was shown that there is no fundamental reason that prevents the practical implementation of this theoretical concept reaching high efficiency. Several fluid candidates were investigated proving the existence of at least to fluids that meet all the requirements (including the stability under concentrated light) to become part of the FluidReflex concentrator. Finally, several pre-industrial FluidReflex module prototypes have been designed and fabricated. An optimization process for the manufacturing of the multicavity optics was necessary to attain such an optics quality as the one achieved by the single unit. The module prototypes have been measured, both indoors and outdoors, analyzing the current matching of the solar cells beneath the concentrator for different spectral distribution of the incident irradiance. Additionally, the module showed an excellent thermal performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conditions are identified under which analyses of laminar mixing layers can shed light on aspects of turbulent spray combustion. With this in mind, laminar spray-combustion models are formulated for both non-premixed and partially premixed systems. The laminar mixing layer separating a hot-air stream from a monodisperse spray carried by either an inert gas or air is investigated numerically and analytically in an effort to increase understanding of the ignition process leading to stabilization of high-speed spray combustion. The problem is formulated in an Eulerian framework, with the conservation equations written in the boundary-layer approximation and with a one-step Arrhenius model adopted for the chemistry description. The numerical integrations unveil two different types of ignition behaviour depending on the fuel availability in the reaction kernel, which in turn depends on the rates of droplet vaporization and fuel-vapour diffusion. When sufficient fuel is available near the hot boundary, as occurs when the thermochemical properties of heptane are employed for the fuel in the integrations, combustion is established through a precipitous temperature increase at a well-defined thermal-runaway location, a phenomenon that is amenable to a theoretical analysis based on activation-energy asymptotics, presented here, following earlier ideas developed in describing unsteady gaseous ignition in mixing layers. By way of contrast, when the amount of fuel vapour reaching the hot boundary is small, as is observed in the computations employing the thermochemical properties of methanol, the incipient chemical reaction gives rise to a slowly developing lean deflagration that consumes the available fuel as it propagates across the mixing layer towards the spray. The flame structure that develops downstream from the ignition point depends on the fuel considered and also on the spray carrier gas, with fuel sprays carried by air displaying either a lean deflagration bounding a region of distributed reaction or a distinct double-flame structure with a rich premixed flame on the spray side and a diffusion flame on the air side. Results are calculated for the distributions of mixture fraction and scalar dissipation rate across the mixing layer that reveal complexities that serve to identify differences between spray-flamelet and gaseous-flamelet problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GaN y AlN son materiales semiconductores piezoeléctricos del grupo III-V. La heterounión AlGaN/GaN presenta una elevada carga de polarización tanto piezoeléctrica como espontánea en la intercara, lo que genera en su cercanía un 2DEG de grandes concentración y movilidad. Este 2DEG produce una muy alta potencia de salida, que a su vez genera una elevada temperatura de red. Las tensiones de puerta y drenador provocan un stress piezoeléctrico inverso, que puede afectar a la carga de polarización piezoeléctrica y así influir la densidad 2DEG y las características de salida. Por tanto, la física del dispositivo es relevante para todos sus aspectos eléctricos, térmicos y mecánicos. En esta tesis se utiliza el software comercial COMSOL, basado en el método de elementos finitos (FEM), para simular el comportamiento integral electro-térmico, electro-mecánico y electro-térmico-mecánico de los HEMTs de GaN. Las partes de acoplamiento incluyen el modelo de deriva y difusión para el transporte electrónico, la conducción térmica y el efecto piezoeléctrico. Mediante simulaciones y algunas caracterizaciones experimentales de los dispositivos, hemos analizado los efectos térmicos, de deformación y de trampas. Se ha estudiado el impacto de la geometría del dispositivo en su auto-calentamiento mediante simulaciones electro-térmicas y algunas caracterizaciones eléctricas. Entre los resultados más sobresalientes, encontramos que para la misma potencia de salida la distancia entre los contactos de puerta y drenador influye en generación de calor en el canal, y así en su temperatura. El diamante posee une elevada conductividad térmica. Integrando el diamante en el dispositivo se puede dispersar el calor producido y así reducir el auto-calentamiento, al respecto de lo cual se han realizado diversas simulaciones electro-térmicas. Si la integración del diamante es en la parte superior del transistor, los factores determinantes para la capacidad disipadora son el espesor de la capa de diamante, su conductividad térmica y su distancia a la fuente de calor. Este procedimiento de disipación superior también puede reducir el impacto de la barrera térmica de intercara entre la capa adaptadora (buffer) y el substrato. La muy reducida conductividad eléctrica del diamante permite que pueda contactar directamente el metal de puerta (muy cercano a la fuente de calor), lo que resulta muy conveniente para reducir el auto-calentamiento del dispositivo con polarización pulsada. Por otra parte se simuló el dispositivo con diamante depositado en surcos atacados sobre el sustrato como caminos de disipación de calor (disipador posterior). Aquí aparece una competencia de factores que influyen en la capacidad de disipación, a saber, el surco atacado contribuye a aumentar la temperatura del dispositivo debido al pequeño tamaño del disipador, mientras que el diamante disminuiría esa temperatura gracias a su elevada conductividad térmica. Por tanto, se precisan capas de diamante relativamente gruesas para reducer ele efecto de auto-calentamiento. Se comparó la simulación de la deformación local en el borde de la puerta del lado cercano al drenador con estructuras de puerta estándar y con field plate, que podrían ser muy relevantes respecto a fallos mecánicos del dispositivo. Otras simulaciones se enfocaron al efecto de la deformación intrínseca de la capa de diamante en el comportamiento eléctrico del dispositivo. Se han comparado los resultados de las simulaciones de la deformación y las características eléctricas de salida con datos experimentales obtenidos por espectroscopía micro-Raman y medidas eléctricas, respectivamente. Los resultados muestran el stress intrínseco en la capa producido por la distribución no uniforme del 2DEG en el canal y la región de acceso. Además de aumentar la potencia de salida del dispositivo, la deformación intrínseca en la capa de diamante podría mejorar la fiabilidad del dispositivo modulando la deformación local en el borde de la puerta del lado del drenador. Finalmente, también se han simulado en este trabajo los efectos de trampas localizados en la superficie, el buffer y la barrera. Las medidas pulsadas muestran que tanto las puertas largas como las grandes separaciones entre los contactos de puerta y drenador aumentan el cociente entre la corriente pulsada frente a la corriente continua (lag ratio), es decir, disminuir el colapse de corriente (current collapse). Este efecto ha sido explicado mediante las simulaciones de los efectos de trampa de superficie. Por su parte, las referidas a trampas en el buffer se enfocaron en los efectos de atrapamiento dinámico, y su impacto en el auto-calentamiento del dispositivo. Se presenta también un modelo que describe el atrapamiento y liberación de trampas en la barrera: mientras que el atrapamiento se debe a un túnel directo del electrón desde el metal de puerta, el desatrapamiento consiste en la emisión del electrón en la banda de conducción mediante túnel asistido por fonones. El modelo también simula la corriente de puerta, debida a la emisión electrónica dependiente de la temperatura y el campo eléctrico. Además, también se ilustra la corriente de drenador dependiente de la temperatura y el campo eléctrico. ABSTRACT GaN and AlN are group III-V piezoelectric semiconductor materials. The AlGaN/GaN heterojunction presents large piezoelectric and spontaneous polarization charge at the interface, leading to high 2DEG density close to the interface. A high power output would be obtained due to the high 2DEG density and mobility, which leads to elevated lattice temperature. The gate and drain biases induce converse piezoelectric stress that can influence the piezoelectric polarization charge and further influence the 2DEG density and output characteristics. Therefore, the device physics is relevant to all the electrical, thermal, and mechanical aspects. In this dissertation, by using the commercial finite-element-method (FEM) software COMSOL, we achieved the GaN HEMTs simulation with electro-thermal, electro-mechanical, and electro-thermo-mechanical full coupling. The coupling parts include the drift-diffusion model for the electron transport, the thermal conduction, and the piezoelectric effect. By simulations and some experimental characterizations, we have studied the device thermal, stress, and traps effects described in the following. The device geometry impact on the self-heating was studied by electro-thermal simulations and electrical characterizations. Among the obtained interesting results, we found that, for same power output, the distance between the gate and drain contact can influence distribution of the heat generation in the channel and thus influence the channel temperature. Diamond possesses high thermal conductivity. Integrated diamond with the device can spread the generated heat and thus potentially reduce the device self-heating effect. Electro-thermal simulations on this topic were performed. For the diamond integration on top of the device (top-side heat spreading), the determinant factors for the heat spreading ability are the diamond thickness, its thermal conductivity, and its distance to the heat source. The top-side heat spreading can also reduce the impact of thermal boundary resistance between the buffer and the substrate on the device thermal behavior. The very low electrical conductivity of diamond allows that it can directly contact the gate metal (which is very close to the heat source), being quite convenient to reduce the self-heating for the device under pulsed bias. Also, the diamond coated in vias etched in the substrate as heat spreading path (back-side heat spreading) was simulated. A competing mechanism influences the heat spreading ability, i.e., the etched vias would increase the device temperature due to the reduced heat sink while the coated diamond would decrease the device temperature due to its higher thermal conductivity. Therefore, relative thick coated diamond is needed in order to reduce the self-heating effect. The simulated local stress at the gate edge of the drain side for the device with standard and field plate gate structure were compared, which would be relevant to the device mechanical failure. Other stress simulations focused on the intrinsic stress in the diamond capping layer impact on the device electrical behaviors. The simulated stress and electrical output characteristics were compared to experimental data obtained by micro-Raman spectroscopy and electrical characterization, respectively. Results showed that the intrinsic stress in the capping layer caused the non-uniform distribution of 2DEG in the channel and the access region. Besides the enhancement of the device power output, intrinsic stress in the capping layer can potentially improve the device reliability by modulating the local stress at the gate edge of the drain side. Finally, the surface, buffer, and barrier traps effects were simulated in this work. Pulsed measurements showed that long gates and distances between gate and drain contact can increase the gate lag ratio (decrease the current collapse). This was explained by simulations on the surface traps effect. The simulations on buffer traps effects focused on illustrating the dynamic trapping/detrapping in the buffer and the self-heating impact on the device transient drain current. A model was presented to describe the trapping and detrapping in the barrier. The trapping was the electron direct tunneling from the gate metal while the detrapping was the electron emission into the conduction band described by phonon-assisted tunneling. The reverse gate current was simulated based on this model, whose mechanism can be attributed to the temperature and electric field dependent electron emission in the barrier. Furthermore, the mechanism of the device bias via the self-heating and electric field impact on the electron emission and the transient drain current were also illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis doctoral contribuye al análisis y desarrollo de nuevos elementos constructivos que integran sistemas de generación eléctrica a través de células fotovoltaicas (FV); particularmente, basados en tecnología FV de lámina delgada. Para ello se estudia el proceso de la integración arquitectónica de éstos elementos (conocido internacionalmente como “Building Integrated Photovoltaic – BIPV”) mediante diferentes metodologías. Se inicia con el estudio de los elementos fotovoltaicos existentes y continúa con los materiales que conforman actualmente las pieles de los edificios y su posible adaptación a las diferentes tecnologías. Posteriormente, se propone una estrategia de integración de los elementos FV en los materiales constructivos. En ésta se considera la doble función de los elementos BIPV, eléctrica y arquitectónica, y en especial se plantea el estudio de la integración de elementos de disipación térmica y almacenamiento de calor mediante los materiales de cambio de fase (“Phase Change Materials – PCM”), todo esto con el objeto de favorecer el acondicionamiento térmico pasivo a través del elemento BIPV. Para validar dicha estrategia, se desarrolla una metodología experimental que consiste en el diseño y desarrollo de un prototipo denominado elemento BIPV/TF – PCM, así como un método de medida y caracterización en condiciones de laboratorio. Entre los logros alcanzados, destaca la multifuncionalidad de los elementos BIPV, el aprovechamiento de la energía residual del elemento, la reducción de los excedentes térmicos que puedan modificar el balance térmico de la envolvente del edificio, y las mejoras conseguidas en la producción eléctrica de los módulos fotovoltaicos por reducción de temperatura, lo que hará más sostenible la solución BIPV. Finalmente, como resultado del análisis teórico y experimental, esta tesis contribuye significativamente al estudio práctico de la adaptabilidad de los elementos BIPV en el entorno urbano por medio de una metodología que se basa en el desarrollo y puesta en marcha de una herramienta informática, que sirve tanto a ingenieros como arquitectos para verificar la calidad de la integración arquitectónica y calidad eléctrica de los elementos FV, antes, durante y después de la ejecución de un proyecto constructivo. ABSTRACT This Doctoral Thesis contributes to the analysis and development of new building elements that integrate power generation systems using photovoltaic solar cells (PV), particularly based on thin-film PV technology. For this propose, the architectural integration process is studied (concept known as "Building Integrated Photovoltaic - BIPV") by means of different methodologies. It begins with the study of existing PV elements and materials that are currently part of the building skins and the possible adaptation to different technologies. Subsequently, an integration strategy of PV elements in building materials is proposed. Double function of BIPV elements is considered, electrical and architectural, especially the heat dissipation and heat storage elements are studied, particularly the use Phase Change Materials– PCM in order to favor the thermal conditioning of buildings by means of the BIPV elements. For this propose, an experimental methodology is implemented, which consist of the design and develop of a prototype "BIPV/TF- PCM element" and measurement method (indoor laboratory conditions) in order to validate this strategy. Among the most important achievements obtained of this develop and results analysis includes, in particular, the multifunctionality of BIPV elements, the efficient use of the residual energy of the element, reduction of the excess heat that it can change the heat balance of the building envelope and improvements in electricity production of PV modules by reducing the temperature, are some benefits achieved that make the BIPV element will be more sustainable. Finally, as a result of theoretical and experimental analysis, this thesis contributes significantly to the practical study of the adaptability of BIPV elements in the urban environment by means of a novel methodology based on the development and implementation by computer software of a useful tool which serves as both engineers and architects to verify the quality of architectural integration and electrical performance of PV elements before, during, and after execution of a building projects.