32 resultados para Radial basis function network
Resumo:
One of the biggest challenges that software developers face is to make an accurate estimate of the project effort. Radial basis function neural networks have been used to software effort estimation in this work using NASA dataset. This paper evaluates and compares radial basis function versus a regression model. The results show that radial basis function neural network have obtained less Mean Square Error than the regression method.
Resumo:
Este trabajo propone una serie de algoritmos con el objetivo de extraer información de conjuntos de datos con redes de neuronas. Se estudian dichos algoritmos con redes de neuronas Enhenced Neural Networks (ENN), debido a que esta arquitectura tiene algunas ventajas cuando se aproximan funciones mediante redes neuronales. En la red ENN los pesos de la matriz principal varián con cada patrón, por lo que se comete un error menor en la aproximación. Las redes de neuronas ENN reúnen la información en los pesos de su red auxiliar, se propone un método para obtener información de la red a través de dichos pesos en formas de reglas y asignando un factor de certeza de dichas reglas. La red ENN obtiene un error cuadrático medio menor que el error teórico de una aproximación matemática por ejemplo mediante polinomios de Taylor. Se muestra como una red ENN, entrenada a partir un conjunto de patrones obtenido de una función de variables reales, sus pesos asociados tienen unas relaciones similares a las que se veri_can con las variables independientes con dicha función de variables reales. Las redes de neuronas ENN aproximan polinomios, se extrae conocimiento de un conjunto de datos de forma similar a la regresión estadística, resolviendo de forma más adecuada el problema de multicolionalidad en caso de existir. Las relaciones a partir de los pesos asociados de la matriz de la red auxiliar se obtienen similares a los coeficientes de una regresión para el mismo conjunto numérico. Una red ENN entrenada a partir de un conjunto de datos de una función boolena extrae el conocimiento a partir de los pesos asociados, y la influencia de las variables de la regla lógica de la función booleana, queda reejada en esos pesos asociados a la red auxiliar de la red ENN. Se plantea una red de base radial (RBF) para la clasificación y predicción en problemas forestales y agrícolas, obteniendo mejores resultados que con el modelo de regresión y otros métodos. Los resultados con una red RBF mejoran al método de regresión si existe colinealidad entre los datos que se dispone y no son muy numerosos. También se detecta que variables tienen más importancia en virtud de la variable pronóstico. Obteniendo el error cuadrático medio con redes RBF menor que con otros métodos, en particular que con el modelo de regresión. Abstract A series of algorithms is proposed in this study aiming at the goal of producing information about data groups with a neural network. These algorithms are studied with Enheced Neural Networks (ENN), owing to the fact that this structure shows sever advantages when the functions are approximated by neural networks. Main matrix weights in th ENN vary on each pattern; so, a smaller error is produced when approximating. The neural network ENN joins the weight information contained in their auxiliary network. Thus, a method to obtain information on the network through those weights is proposed by means of rules adding a certainty factor. The net ENN obtains a mean squared error smaller than the theorical one emerging from a mathematical aproximation such as, for example, by means of Taylor's polynomials. This study also shows how in a neural network ENN trained from a set of patterns obtained through a function of real variables, its associated weights have relationships similar to those ones tested by means of the independent variables connected with such functions of real variables. The neural network ENN approximates polynomials through it information about a set of data may be obtained in a similar way than through statistical regression, solving in this way possible problems of multicollinearity in a more suitable way. Relationships emerging from the associated weights in the auxiliary network matrix obtained are similar to the coeficients corresponding to a regression for the same numerical set. A net ENN trained from a boolean function data set obtains its information from its associated weights. The inuence of the variables of the boolean function logical rule are reected on those weights associated to the net auxiliar of the ENN. A radial basis neural networks (RBF) for the classification and prediction of forest and agricultural problems is proposed. This scheme obtains better results than the ones obtained by means of regression and other methods. The outputs with a net RBF better the regression method if the collineality with the available data and their amount is not very large. Detection of which variables are more important basing on the forecast variable can also be achieved, obtaining a mean squared error smaller that the ones obtained through other methods, in special the one produced by the regression pattern.
Resumo:
Using the Monte Carlo method the behavior of a system of true hard cylinders has been studied. Values of the length-to-breadth ratio L/D and packing fraction η have been chosen similar to those of real nematic liquid crystals. Results include radial distribution function g(r), structure factor S(k), and orientational order parameter M. These results lead to the conclusion that the hard cylinder model may be a useful reference for real mesomorphic phases.
Resumo:
Resumen El diseño de sistemas ópticos, entendido como un arte por algunos, como una ciencia por otros, se ha realizado durante siglos. Desde los egipcios hasta nuestros días los sistemas de formación de imagen han ido evolucionando así como las técnicas de diseño asociadas. Sin embargo ha sido en los últimos 50 años cuando las técnicas de diseño han experimentado su mayor desarrollo y evolución, debido, en parte, a la aparición de nuevas técnicas de fabricación y al desarrollo de ordenadores cada vez más potentes que han permitido el cálculo y análisis del trazado de rayos a través de los sistemas ópticos de forma rápida y eficiente. Esto ha propiciado que el diseño de sistemas ópticos evolucione desde los diseños desarrollados únicamente a partir de la óptica paraxial hasta lo modernos diseños realizados mediante la utilización de diferentes técnicas de optimización multiparamétrica. El principal problema con el que se encuentra el diseñador es que las diferentes técnicas de optimización necesitan partir de un diseño inicial el cual puede fijar las posibles soluciones. Dicho de otra forma, si el punto de inicio está lejos del mínimo global, o diseño óptimo para las condiciones establecidas, el diseño final puede ser un mínimo local cerca del punto de inicio y lejos del mínimo global. Este tipo de problemática ha llevado al desarrollo de sistemas globales de optimización que cada vez sean menos sensibles al punto de inicio de la optimización. Aunque si bien es cierto que es posible obtener buenos diseños a partir de este tipo de técnicas, se requiere de muchos intentos hasta llegar a la solución deseada, habiendo un entorno de incertidumbre durante todo el proceso, puesto que no está asegurado el que se llegue a la solución óptima. El método de las Superficies Múltiples Simultaneas (SMS), que nació como una herramienta de cálculo de concentradores anidólicos, se ha demostrado como una herramienta también capaz utilizarse para el diseño de sistemas ópticos formadores de imagen, aunque hasta la fecha se ha utilizado para el diseño puntual de sistemas de formación de imagen. Esta tesis tiene por objeto presentar el SMS como un método que puede ser utilizado de forma general para el diseño de cualquier sistema óptico de focal fija o v afocal con un aumento definido así como una herramienta que puede industrializarse para ayudar al diseñador a afrontar de forma sencilla el diseño de sistemas ópticos complejos. Esta tesis está estructurada en cinco capítulos: El capítulo 1, es un capítulo de fundamentos donde se presentan los conceptos fundamentales necesarios para que el lector, aunque no posea una gran base en óptica formadora de imagen, pueda entender los planteamientos y resultados que se presentan en el resto de capítulos El capitulo 2 aborda el problema de la optimización de sistemas ópticos, donde se presenta el método SMS como una herramienta idónea para obtener un punto de partida para el proceso de optimización. Mediante un ejemplo aplicado se demuestra la importancia del punto de partida utilizado en la solución final encontrada. Además en este capítulo se presentan diferentes técnicas que permiten la interpolación y optimización de las superficies obtenidas a partir de la aplicación del SMS. Aunque en esta tesis se trabajará únicamente utilizando el SMS2D, se presenta además un método para la interpolación y optimización de las nubes de puntos obtenidas a partir del SMS3D basado en funciones de base radial (RBF). En el capítulo 3 se presenta el diseño, fabricación y medidas de un objetivo catadióptrico panorámico diseñado para trabajar en la banda del infrarrojo lejano (8-12 μm) para aplicaciones de vigilancia perimetral. El objetivo presentado se diseña utilizando el método SMS para tres frentes de onda de entrada utilizando cuatro superficies. La potencia del método de diseño utilizado se hace evidente en la sencillez con la que este complejo sistema se diseña. Las imágenes presentadas demuestran cómo el prototipo desarrollado cumple a la perfección su propósito. El capítulo 4 aborda el problema del diseño de sistemas ópticos ultra compactos, se introduce el concepto de sistemas multicanal, como aquellos sistemas ópticos compuestos por una serie de canales que trabajan en paralelo. Este tipo de sistemas resultan particularmente idóneos para él diseño de sistemas afocales. Se presentan estrategias de diseño para sistemas multicanal tanto monocromáticos como policromáticos. Utilizando la novedosa técnica de diseño que en este capítulo se presenta el diseño de un telescopio de seis aumentos y medio. En el capítulo 5 se presenta una generalización del método SMS para rayos meridianos. En este capítulo se presenta el algoritmo que debe utilizarse para el diseño de cualquier sistema óptico de focal fija. La denominada optimización fase 1 se vi introduce en el algoritmo presentado de forma que mediante el cambio de las condiciones iníciales del diseño SMS que, aunque el diseño se realice para rayos meridianos, los rayos skew tengan un comportamiento similar. Para probar la potencia del algoritmo desarrollado se presenta un conjunto de diseños con diferente número de superficies. La estabilidad y potencia del algoritmo se hace evidente al conseguirse por primera vez el diseño de un sistema de seis superficies diseñado por SMS. vii Abstract The design of optical systems, considered an art by some and a science by others, has been developed for centuries. Imaging optical systems have been evolving since Ancient Egyptian times, as have design techniques. Nevertheless, the most important developments in design techniques have taken place over the past 50 years, in part due to the advances in manufacturing techniques and the development of increasingly powerful computers, which have enabled the fast and efficient calculation and analysis of ray tracing through optical systems. This has led to the design of optical systems evolving from designs developed solely from paraxial optics to modern designs created by using different multiparametric optimization techniques. The main problem the designer faces is that the different optimization techniques require an initial design which can set possible solutions as a starting point. In other words, if the starting point is far from the global minimum or optimal design for the set conditions, the final design may be a local minimum close to the starting point and far from the global minimum. This type of problem has led to the development of global optimization systems which are increasingly less sensitive to the starting point of the optimization process. Even though it is possible to obtain good designs from these types of techniques, many attempts are necessary to reach the desired solution. This is because of the uncertain environment due to the fact that there is no guarantee that the optimal solution will be obtained. The Simultaneous Multiple Surfaces (SMS) method, designed as a tool to calculate anidolic concentrators, has also proved useful for the design of image-forming optical systems, although until now it has occasionally been used for the design of imaging systems. This thesis aims to present the SMS method as a technique that can be used in general for the design of any optical system, whether with a fixed focal or an afocal with a defined magnification, and also as a tool that can be commercialized to help designers in the design of complex optical systems. The thesis is divided into five chapters. Chapter 1 establishes the basics by presenting the fundamental concepts which the reader needs to acquire, even if he/she doesn‟t have extensive knowledge in the field viii of image-forming optics, in order to understand the steps taken and the results obtained in the following chapters. Chapter 2 addresses the problem of optimizing optical systems. Here the SMS method is presented as an ideal tool to obtain a starting point for the optimization process. The importance of the starting point for the final solution is demonstrated through an example. Additionally, this chapter introduces various techniques for the interpolation and optimization of the surfaces obtained through the application of the SMS method. Even though in this thesis only the SMS2D method is used, we present a method for the interpolation and optimization of clouds of points obtained though the SMS3D method, based on radial basis functions (RBF). Chapter 3 presents the design, manufacturing and measurement processes of a catadioptric panoramic lens designed to work in the Long Wavelength Infrared (LWIR) (8-12 microns) for perimeter surveillance applications. The lens presented is designed by using the SMS method for three input wavefronts using four surfaces. The powerfulness of the design method used is revealed through the ease with which this complex system is designed. The images presented show how the prototype perfectly fulfills its purpose. Chapter 4 addresses the problem of designing ultra-compact optical systems. The concept of multi-channel systems, such as optical systems composed of a series of channels that work in parallel, is introduced. Such systems are especially suitable for the design of afocal systems. We present design strategies for multichannel systems, both monochromatic and polychromatic. A telescope designed with a magnification of six-and-a-half through the innovative technique exposed in this chapter is presented. Chapter 5 presents a generalization of the SMS method for meridian rays. The algorithm to be used for the design of any fixed focal optics is revealed. The optimization known as phase 1 optimization is inserted into the algorithm so that, by changing the initial conditions of the SMS design, the skew rays have a similar behavior, despite the design being carried out for meridian rays. To test the power of the developed algorithm, a set of designs with a different number of surfaces is presented. The stability and strength of the algorithm become apparent when the first design of a system with six surfaces if obtained through the SMS method.
Resumo:
The Jones-Wilkins-Lee (JWL) equation of state parameters for ANFO and emulsion-type explosives have been obtained from cylinder test expansion measurements. The calculation method comprises a new radial expansion function, with a non-zero initial velocity at the onset of the expansion in order to comply with a positive Gurney energy at unit relative volume, as the isentropic expansion from the CJ state predicts. The equations reflecting the CJ state conditions and the measured expansion energy were solved for the JWL parameters by a non-linear least squares scheme. The JWL parameters of thirteen ANFO and emulsion type explosives have been determined in this way from their cylinder test expansion data. The results were evaluated through numerical modelling of the tests with the LS-DYNA hydrocode; the expansion histories from the modelling were compared with the measured ones, and excellent agreement was found.
Resumo:
Esta tesis propone una completa formulación termo-mecánica para la simulación no-lineal de mecanismos flexibles basada en métodos libres de malla. El enfoque se basa en tres pilares principales: la formulación de Lagrangiano total para medios continuos, la discretización de Bubnov-Galerkin, y las funciones de forma libres de malla. Los métodos sin malla se caracterizan por la definición de un conjunto de funciones de forma en dominios solapados, junto con una malla de integración de las ecuaciones discretas de balance. Dos tipos de funciones de forma se han seleccionado como representación de las familias interpolantes (Funciones de Base Radial) y aproximantes (Mínimos Cuadrados Móviles). Su formulación se ha adaptado haciendo sus parámetros compatibles, y su ausencia de conectividad predefinida se ha aprovechado para interconectar múltiples dominios de manera automática, permitiendo el uso de mallas de fondo no conformes. Se propone una formulación generalizada de restricciones, juntas y contactos, válida para sólidos rígidos y flexibles, siendo estos últimos discretizados mediante elementos finitos (MEF) o libres de malla. La mayor ventaja de este enfoque reside en que independiza completamente el dominio con respecto de las uniones y acciones externas a cada sólido, permitiendo su definición incluso fuera del contorno. Al mismo tiempo, también se minimiza el número de ecuaciones de restricción necesarias para la definición de uniones realistas. Las diversas validaciones, ejemplos y comparaciones detalladas muestran como el enfoque propuesto es genérico y extensible a un gran número de sistemas. En concreto, las comparaciones con el MEF indican una importante reducción del error para igual número de nodos, tanto en simulaciones mecánicas, como térmicas y termo-mecánicas acopladas. A igualdad de error, la eficiencia numérica de los métodos libres de malla es mayor que la del MEF cuanto más grosera es la discretización. Finalmente, la formulación se aplica a un problema de diseño real sobre el mantenimiento de estructuras masivas en el interior de un reactor de fusión, demostrando su viabilidad en análisis de problemas reales, y a su vez mostrando su potencial para su uso en simulación en tiempo real de sistemas no-lineales. A new complete formulation is proposed for the simulation of nonlinear dynamic of multibody systems with thermo-mechanical behaviour. The approach is founded in three main pillars: total Lagrangian formulation, Bubnov-Galerkin discretization, and meshfree shape functions. Meshfree methods are characterized by the definition of a set of shape functions in overlapping domains, and a background grid for integration of the Galerkin discrete equations. Two different types of shape functions have been chosen as representatives of interpolation (Radial Basis Functions), and approximation (Moving Least Squares) families. Their formulation has been adapted to use compatible parameters, and their lack of predefined connectivity is used to interconnect different domains seamlessly, allowing the use of non-conforming meshes. A generalized formulation for constraints, joints, and contacts is proposed, which is valid for rigid and flexible solids, being the later discretized using either finite elements (FEM) or meshfree methods. The greatest advantage of this approach is that makes the domain completely independent of the external links and actions, allowing to even define them outside of the boundary. At the same time, the number of constraint equations needed for defining realistic joints is minimized. Validation, examples, and benchmarks are provided for the proposed formulation, demonstrating that the approach is generic and extensible to further problems. Comparisons with FEM show a much lower error for the same number of nodes, both for mechanical and thermal analyses. The numerical efficiency is also better when coarse discretizations are used. A final demonstration to a real problem for handling massive structures inside of a fusion reactor is presented. It demonstrates that the application of meshfree methods is feasible and can provide an advantage towards the definition of nonlinear real-time simulation models.
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Plant proteolysis is a metabolic process where specific enzymes called peptidases degrade proteins. In plants, this complex process involves broad metabolic networks and different sub-cellular compartments. Several types of peptidases take part in the proteolytic process, mainly cysteine-, serine-, aspartyl- and metallo- peptidases. Among the cysteine-peptidases, the papain-like or C1A peptidases (family C1, clan CA) are extensively present in land plants and are classified into catepsins L-, B-, H- and Flike. The catalytic mechanism of these C1A peptidases is highly conserved and involves the three amino acids Cys, His and Asn in the catalytic triad, and a Gln residue which seems essential for maintaining an active enzyme conformation. These proteins are synthesized as inactive precursors, which comprise an N-terminal signal peptide, a propeptide, and the mature protein. In barley, we have identified 33 cysteine-peptidases from the papain-like family, classifying them into 8 different groups. Five of them corresponded to cathepsins L-like (5 subgroups), 1 cathepsin B-like group, 1 cathepsin F-like group and 1 cathepsin H-like group. Besides, C1A peptidases are the specific targets of the plant proteinaceous inhibitors known as phytocystatins (PhyCys). The cystatin inhibitory mechanism is produced by a tight and reversible interaction with their target enzymes. In barley, the cystatin gene family is comprised by 13 members. In this work we have tried to elucidate the role of the C1A cysteine-peptidases and their specific inhibitors (cystatins) in the germination process of the barley grain. Therefore, we selected a representative member of each group/subgroup of C1A peptidases (1 cathepsin B-like, 1 cathepsin F-like, 1 cathepsin H-like and 5 cathepsins L-like). The molecular characterization of the cysteine-peptidases was done and the peptidase-inhibitor interaction was analyzed in vitro and in vivo. A study in the structural basis for specificity of pro-peptide/enzyme interaction in barley C1A cysteine-peptidases has been also carried out by inhibitory assays and the modeling of the three-dimensional structures. The barley grain maturation produces the accumulation of storage proteins (prolamins) in the endosperm which are mobilized during germination to supply the required nutrients until the photosynthesis is fully established. In this work, we have demonstrated the participation of the cysteine-peptidases and their inhibitors in the degradation of the different storage protein fractions (hordeins, albumins and globulins) present in the barley grain. Besides, transgenic barley plants overexpressing or silencing cysteine-peptidases or cystatins were obtained by Agrobacterium-mediated transformation of barley immature embryos to analyze their physiological function in vivo. Preliminary assays were carried out with the T1 grains of several transgenic lines. Comparing the knock-out and the overexpressing lines with the WT, alterations in the germination process were detected and were correlated with their grain hordein content. These data will be validated with the homozygous grains that are being produced through the double haploid technique by microspore culture. Resumen La proteólisis es un proceso metabólico por el cual se lleva a cabo la degradación de las proteínas de un organismo a través de enzimas específicas llamadas proteasas. En plantas, este complejo proceso comprende un entramado de rutas metabólicas que implican, además, diferentes compartimentos subcelulares. En la proteólisis participan numerosas proteasas, principalmente cisteín-, serín-, aspartil-, y metalo-proteasas. Dentro de las cisteín-proteasas, las proteasas tipo papaína o C1A (familia C1, clan CA) están extensamente representadas en plantas terrestres, y se clasifican en catepsinas tipo L, B, H y F. El mecanismo catalítico de estas proteasas está altamente conservado y la triada catalítica formada por los aminoácidos Cys, His y Asn, y a un aminoácido Gln, que parece esencial para el mantenimiento de la conformación activa de la proteína. Las proteasas C1A se sintetizan como precursores inactivos y comprenden un péptido señal en el extremo N-terminal, un pro-péptido y la proteína madura. En cebada hemos identificado 33 cisteín-proteasas de tipo papaína y las hemos clasificado filogenéticamente en 8 grupos diferentes. Cinco de ellos pertenecen a las catepsinas tipo L (5 subgrupos), un grupo a las catepsinas tipo-B, otro a las catepsinas tipo-F y un último a las catepsinas tipo-H. Las proteasas C1A son además las dianas específicas de los inhibidores protéicos de plantas denominados fitocistatinas. El mecanismo de inhibición de las cistatinas está basado en una fuerte interacción reversible. En cebada, se conoce la familia génica completa de las cistatinas, que está formada por 13 miembros. En el presente trabajo se ha investigado el papel de las cisteín-proteasas de cebada y sus inhibidores específicos en el proceso de la germinación de la semilla. Para ello, se seleccionó una proteasa representante de cada grupo/subgrupo (1 catepsina tipo- B, 1 tipo-F, 1 tipo-H, y 5 tipo-L, una por cada subgrupo). Se ha llevado a cabo su caracterización molecular y se ha analizado la interacción enzima-inhibidor tanto in vivo como in vitro. También se han realizado estudios sobre las bases estructurales que demuestran la especificidad en la interacción enzima/propéptido en las proteasas C1A de cebada, mediante ensayos de inhibición y la predicción de modelos estructurales de la interacción. Finalmente, y dado que durante la maduración de la semilla se almacenan proteínas de reserva (prolaminas) en el endospermo que son movilizadas durante la germinación para suministrar los nutrientes necesarios hasta que la nueva planta pueda realizar la fotosíntesis, en este trabajo se ha demostrado la participación de las cisteínproteasas y sus inhibidores en la degradación de las diferentes tipos de proteínas de reserva (hordeinas, albúmins y globulinas) presentes en el grano de cebada. Además, se han obtenido plantas transgénicas de cebada que sobre-expresan o silencian cistatinas y cisteín-proteasas con el fin de analizar la función fisiológica in vivo. Se han realizado análisis preliminares en las semillas T1 de varias líneas tránsgenicas de cebada y al comparar las líneas knock-out y las líneas de sobre-expresión con las silvestres, se han detectado alteraciones en la germinación que están además correlacionadas con el contenido de hordeinas de las semillas. Estos datos serán validados en las semillas homocigotas que se están generando mediante la técnica de dobles haploides a partir del cultivo de microesporas.
Resumo:
A Digital Elevation Model (DEM) provides the information basis used for many geographic applications such as topographic and geomorphologic studies, landscape through GIS (Geographic Information Systems) among others. The DEM capacity to represent Earth?s surface depends on the surface roughness and the resolution used. Each DEM pixel depends on the scale used characterized by two variables: resolution and extension of the area studied. DEMs can vary in resolution and accuracy by the production method, although there are statistical characteristics that keep constant or very similar in a wide range of scales. Based on this property, several techniques have been applied to characterize DEM through multiscale analysis directly related to fractal geometry: multifractal spectrum and the structure function. The comparison of the results by both methods is discussed. The study area is represented by a 1024 x 1024 data matrix obtained from a DEM with a resolution of 10 x 10 m each point, which correspond with a region known as ?Monte de El Pardo? a property of Spanish National Heritage (Patrimonio Nacional Español) of 15820 Ha located to a short distance from the center of Madrid. Manzanares River goes through this area from North to South. In the southern area a reservoir is found with a capacity of 43 hm3, with an altitude of 603.3 m till 632 m when it is at the highest capacity. In the middle of the reservoir the minimum altitude of this area is achieved.
Resumo:
Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
A connectivity function defined by the 3D-Euler number, is a topological indicator and can be related to hydraulic properties (Vogel and Roth, 2001). This study aims to develop connectivity Euler indexes as indicators of the ability of soils for fluid percolation. The starting point was a 3D grey image acquired by X-ray computed tomography of a soil at bulk density of 1.2 mg cm-3. This image was used in the simulation of 40000 particles following a directed random walk algorithms with 7 binarization thresholds. These data consisted of 7 files containing the simulated end points of the 40000 random walks, obtained in Ruiz-Ramos et al. (2010). MATLAB software was used for computing the frequency matrix of the number of particles arriving at every end point of the random walks and their 3D representation.
Resumo:
The study of temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport, as well as forminimizing losses. The objective of this work is to develop a new methodology of data analysis based on phase space graphs of temperature and enthalpy, collected by means of multidistributed, low cost and autonomous wireless sensors and loggers. A transoceanic refrigerated transport of lemons in a reefer container ship from Montevideo (Uruguay) to Cartagena (Spain) was monitored with a network of 39 semi-passive TurboTag RFID loggers and 13 i-button loggers. Transport included intermodal transit from transoceanic to short shipping vessels and a truck trip. Data analysis is carried out using qualitative phase diagrams computed on the basis of Takens?Ruelle reconstruction of attractors. Fruit stress is quantified in terms of the phase diagram area which characterizes the cyclic behaviour of temperature. Areas within the enthalpy phase diagram computed for the short sea shipping transport were 5 times higher than those computed for the long sea shipping, with coefficients of variation above 100% for both periods. This new methodology for data analysis highlights the significant heterogeneity of thermohygrometric conditions at different locations in the container.
Resumo:
Soy protein isolate is typical vegetable protein with health-enhancing activities. Inulin, a prebiotic no digestible carbohydrate, has functional properties. A mashed potato serving of 200 g with added soy protein isolate and inulin concentrations of 15?60 g kg provides from 3 to 12 g of soy protein isolate and/or inulin, respectively. Currently, no information is available about the possible texture-modifying effect of this non-ionizable polar carbohydrate in different soy-based food systems. In this study, the effect of the addition of soy protein isolate and inulin blends at different soy protein isolate: inulin ratios on the degree of inulin polymerization and the rheological and structural properties of fresh mashed and frozen/thawed mashed potatoes were evaluated. The inulin chemical structure remained intact throughout the various treatments, and soy protein isolate did not affect inulin composition being a protein compatible with this fructan. Small-strain rheology showed that both ingredients behaved like soft fillers. In the frozen/thawed mashed potatoes samples,0 addition of 30 : 30 and 15 : 60 blend ratios significantly increased elasticity (G value) compared with 0 : 0 control, consequently reducing the freeze/thaw stability conferred by the cryoprotectants. Inulin crystallites caused a significant strengthening effect on soy protein isolate gel. Micrographs revealed that soy protein isolate supports the inulin structure by building up a second fine-stranded network. Thereby, possibility of using soy protein isolate and inulin in combination with mashed potatoes to provide a highly nutritious and healthy product is promising.
Resumo:
Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.