57 resultados para Ontology Languages
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
Query rewriting is one of the fundamental steps in ontologybased data access (OBDA) approaches. It takes as inputs an ontology and a query written according to that ontology, and produces as an output a set of queries that should be evaluated to account for the inferences that should be considered for that query and ontology. Different query rewriting systems give support to different ontology languages with varying expressiveness, and the rewritten queries obtained as an output do also vary in expressiveness. This heterogeneity has traditionally made it difficult to compare different approaches, and the area lacks in general commonly agreed benchmarks that could be used not only for such comparisons but also for improving OBDA support. In this paper we compile data, dimensions and measurements that have been used to evaluate some of the most recent systems, we analyse and characterise these assets, and provide a unified set of them that could be used as a starting point towards a more systematic benchmarking process for such systems. Finally, we apply this initial benchmark with some of the most relevant OBDA approaches in the state of the art.
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.
Resumo:
In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism.
Resumo:
In the context of the Semantic Web, resources on the net can be enriched by well-defined, machine-understandable metadata describing their associated conceptual meaning. These metadata consisting of natural language descriptions of concepts are the focus of the activity we describe in this chapter, namely, ontology localization. In the framework of the NeOn Methodology, ontology localization is defined as the activity of adapting an ontology to a particular language and culture. This adaptation mainly involves the translation of the natural language descriptions of the ontology from a source natural language to a target natural language, with the final objective of obtaining a multilingual ontology, that is, an ontology documented in several natural languages. The purpose of this chapter is to provide detailed and prescriptive methodological guidelines to support the performance of this activity.
Resumo:
In contrast to other approaches that provide methodological guidance for ontology engineering, the NeOn Methodology does not prescribe a rigid workflow, but instead it suggests a variety of pathways for developing ontologies. The nine scenarios proposed in the methodology cover commonly occurring situations, for example, when available ontologies need to be re-engineered, aligned, modularized, localized to support different languages and cultures, and integrated with ontology design patterns and non-ontological resources, such as folksonomies or thesauri. In addition, the NeOn Methodology framework provides (a) a glossary of processes and activities involved in the development of ontologies, (b) two ontology life cycle models, and (c) a set of methodological guidelines for different processes and activities, which are described (a) functionally, in terms of goals, inputs, outputs, and relevant constraints; (b) procedurally, by means of workflow specifications; and (c) empirically, through a set of illustrative examples.
Resumo:
This paper describes the development of an ontology for autonomous systems, as the initial stage of a research programe on autonomous systems’ engineering within a model-based control approach. The ontology aims at providing a unified conceptual framework for the autonomous systems’ stakeholders, from developers to software engineers. The modular ontology contains both generic and domain-specific concepts for autonomous systems description and engineering. The ontology serves as the basis in a methodology to obtain the autonomous system’s conceptual models. The objective is to obtain and to use these models as main input for the autonomous system’s model-based control system.
Resumo:
Studying independence of goals has proven very useful in the context of logic programming. In particular, it has provided a formal basis for powerful automatic parallelization tools, since independence ensures that two goals may be evaluated in parallel while preserving correctness and eciency. We extend the concept of independence to constraint logic programs (CLP) and prove that it also ensures the correctness and eciency of the parallel evaluation of independent goals. Independence for CLP languages is more complex than for logic programming as search space preservation is necessary but no longer sucient for ensuring correctness and eciency. Two additional issues arise. The rst is that the cost of constraint solving may depend upon the order constraints are encountered. The second is the need to handle dynamic scheduling. We clarify these issues by proposing various types of search independence and constraint solver independence, and show how they can be combined to allow dierent optimizations, from parallelism to intelligent backtracking. Sucient conditions for independence which can be evaluated \a priori" at run-time are also proposed. Our study also yields new insights into independence in logic programming languages. In particular, we show that search space preservation is not only a sucient but also a necessary condition for ensuring correctness and eciency of parallel execution.
Resumo:
We address the problem of developing mechanisms for easily implementing modular extensions to modular (logic) languages. By(language) extensions we refer to different groups of syntactic definitions and translation rules that extend a language. Our use of the concept of modularity in this context is twofold. We would like these extensions to be modular, in the sense above, i.e., we should be able to develop different extensions mostly separately. At the same time, the sources and targets for the extensions are modular languages, i.e., such extensions may take as input sepárate pieces of code and also produce sepárate pieces of code. Dealing with this double requirement involves interesting challenges to ensure that modularity is not broken: first, combinations of extensions (as if they were a single extensión) must be given a precise meaning. Also, the sepárate translation of múltiple sources (as if they were a single source) must be feasible. We present a detailed description of a code expansion-based framework that proposes novel solutions for these problems. We argüe that the approach, while implemented for Ciao, can be adapted for other Prolog-based systems and languages.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
In this paper we study, through a concrete case, the feasibility of using a high-level, general-purpose logic language in the design and implementation of applications targeting wearable computers. The case study is a "sound spatializer" which, given real-time signáis for monaural audio and heading, generates stereo sound which appears to come from a position in space. The use of advanced compile-time transformations and optimizations made it possible to execute code written in a clear style without efñciency or architectural concerns on the target device, while meeting strict existing time and memory constraints. The final executable compares favorably with a similar implementation written in C. We believe that this case is representative of a wider class of common pervasive computing applications, and that the techniques we show here can be put to good use in a range of scenarios. This points to the possibility of applying high-level languages, with their associated flexibility, conciseness, ability to be automatically parallelized, sophisticated compile-time tools for analysis and verification, etc., to the embedded systems field without paying an unnecessary performance penalty.
Resumo:
Mapping of the Music Ontology to the Media Value Chain Ontology and the PROV Ontology
Resumo:
Abstract. The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies for describing different domains. Ac-cording to LD principles, developers should reuse as many available terms as possible to describe their data. Importing ontologies or referring to their terms’ URIs are the two main ways to reuse knowledge from available ontologies. In this paper, we have analyzed 18589 terms appearing within 196 ontologies in-cluded in the Linked Open Vocabularies (LOV) registry with the aim of under-standing the current state of ontology reuse in the LD context. In order to char-acterize the landscape of ontology reuse in this context, we have extracted sta-tistics about currently reused elements, calculated ratios for reuse, and drawn graphs about imports and references between ontologies. Keywords: ontology, vocabulary, reuse, linked data, ontology import