18 resultados para Decision Support Techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the multi-agent organization of a computer system that was designed to assist operators in decision making in the presence of emergencies. The application was developed for the case of emergencies caused by river floods. It operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.) and applies multi-agent techniques to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation with uncertainty models (bayesian networks). This system has been applied and validated at two particular sites in Spain (the Jucar basin and the South basin).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the presence of a river flood, operators in charge of control must take decisions based on imperfect and incomplete sources of information (e.g., data provided by a limited number sensors) and partial knowledge about the structure and behavior of the river basin. This is a case of reasoning about a complex dynamic system with uncertainty and real-time constraints where bayesian networks can be used to provide an effective support. In this paper we describe a solution with spatio-temporal bayesian networks to be used in a context of emergencies produced by river floods. In the paper we describe first a set of types of causal relations for hydrologic processes with spatial and temporal references to represent the dynamics of the river basin. Then we describe how this was included in a computer system called SAIDA to provide assistance to operators in charge of control in a river basin. Finally the paper shows experimental results about the performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses how agent technology can be applied to the design of advanced Information Systems for Decision Support. In particular, it describes the different steps and models that are necessary to engineer Decision Support Systems based on a multiagent architecture. The approach is illustrated by a case study in the traffic management domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the advancement of both, information technology in general, and databases in particular; data storage devices are becoming cheaper and data processing speed is increasing. As result of this, organizations tend to store large volumes of data holding great potential information. Decision Support Systems, DSS try to use the stored data to obtain valuable information for organizations. In this paper, we use both data models and use cases to represent the functionality of data processing in DSS following Software Engineering processes. We propose a methodology to develop DSS in the Analysis phase, respective of data processing modeling. We have used, as a starting point, a data model adapted to the semantics involved in multidimensional databases or data warehouses, DW. Also, we have taken an algorithm that provides us with all the possible ways to automatically cross check multidimensional model data. Using the aforementioned, we propose diagrams and descriptions of use cases, which can be considered as patterns representing the DSS functionality, in regard to DW data processing, DW on which DSS are based. We highlight the reusability and automation benefits that this can be achieved, and we think this study can serve as a guide in the development of DSS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a knowledge-based application in the domain of road traffic management that we have developed following a knowledge modeling approach and the notion of problem-solving method. The article presents first a domain-independent model for real-time decision support as a structured collection of problem solving methods. Then, it is described how this general model is used to develop an operational version for the domain of traffic management. For this purpose, a particular knowledge modeling tool, called KSM (Knowledge Structure Manager), was applied. Finally, the article shows an application developed for a traffic network of the city of Madrid and it is compared with a second application developed for a different traffic area of the city of Barcelona.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The risks associated with gestational diabetes (GD) can be reduced with an active treatment able to improve glycemic control. Advances in mobile health can provide new patient-centric models for GD to create personalized health care services, increase patient independence and improve patients’ self-management capabilities, and potentially improve their treatment compliance. In these models, decision-support functions play an essential role. The telemedicine system MobiGuide provides personalized medical decision support for GD patients that is based on computerized clinical guidelines and adapted to a mobile environment. The patient’s access to the system is supported by a smartphone-based application that enhances the efficiency and ease of use of the system. We formalized the GD guideline into a computer-interpretable guideline (CIG). We identified several workflows that provide decision-support functionalities to patients and 4 types of personalized advice to be delivered through a mobile application at home, which is a preliminary step to providing decision-support tools in a telemedicine system: (1) therapy, to help patients to comply with medical prescriptions; (2) monitoring, to help patients to comply with monitoring instructions; (3) clinical assessment, to inform patients about their health conditions; and (4) upcoming events, to deal with patients’ personal context or special events. The whole process to specify patient-oriented decision support functionalities ensures that it is based on the knowledge contained in the GD clinical guideline and thus follows evidence-based recommendations but at the same time is patient-oriented, which could enhance clinical outcomes and patients’ acceptance of the whole system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gestational Diabetes (GD) has increased over the last 20 years, affecting up to 15% of pregnant women worldwide. The complications associated can be reduced with the appropriate glycemic control during the pregnancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Early and effective identification of developmental disorders during childhood remains a critical task for the international community. The second highest prevalence of common developmental disorders in children are language delays, which are frequently the first symptoms of a possible disorder. Objective: This paper evaluates a Web-based Clinical Decision Support System (CDSS) whose aim is to enhance the screening of language disorders at a nursery school. The common lack of early diagnosis of language disorders led us to deploy an easy-to-use CDSS in order to evaluate its accuracy in early detection of language pathologies. This CDSS can be used by pediatricians to support the screening of language disorders in primary care. Methods: This paper details the evaluation results of the ?Gades? CDSS at a nursery school with 146 children, 12 educators, and 1 language therapist. The methodology embraces two consecutive phases. The first stage involves the observation of each child?s language abilities, carried out by the educators, to facilitate the evaluation of language acquisition level performed by a language therapist. Next, the same language therapist evaluates the reliability of the observed results. Results: The Gades CDSS was integrated to provide the language therapist with the required clinical information. The validation process showed a global 83.6% (122/146) success rate in language evaluation and a 7% (7/94) rate of non-accepted system decisions within the range of children from 0 to 3 years old. The system helped language therapists to identify new children with potential disorders who required further evaluation. This process will revalidate the CDSS output and allow the enhancement of early detection of language disorders in children. The system does need minor refinement, since the therapists disagreed with some questions from the CDSS knowledge base (KB) and suggested adding a few questions about speech production and pragmatic abilities. The refinement of the KB will address these issues and include the requested improvements, with the support of the experts who took part in the original KB development. Conclusions: This research demonstrated the benefit of a Web-based CDSS to monitor children?s neurodevelopment via the early detection of language delays at a nursery school. Current next steps focus on the design of a model that includes pseudo auto-learning capacity, supervised by experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To achieve sustainability in the area of transport we need to view the decision-making process as a whole and consider all the most important socio-economic and environmental aspects involved. Improvements in transport infrastructures have a positive impact on regional development and significant repercussions on the economy, as well as affecting a large number of ecological processes. This article presents a DSS to assess the territorial effects of new linear transport infrastructures based on the use of GIS. The TITIM ? Transport Infrastructure Territorial Impact Measurement ? GIS tool allows these effects to be calculated by evaluating the improvement in accessibility, loss of landscape connectivity, and the impact on other local territorial variables such as landscape quality, biodiversity and land-use quality. The TITIM GIS tool assesses these variables automatically, simply by entering the required inputs, and thus avoiding the manual reiteration and execution of these multiple processes. TITIM allows researchers to use their own GIS databases as inputs, in contrast with other tools that use official or predefined maps. The TITIM GIS-tool is tested by application to six HSR projects in the Spanish Strategic Transport and Infrastructure Plan 2005?2020 (PEIT). The tool creates all 65 possible combinations of these projects, which will be the real test scenarios. For each one, the tool calculates the accessibility improvement, the landscape connectivity loss, and the impact on the landscape, biodiversity and land-use quality. The results reveal which of the HSR projects causes the greatest benefit to the transport system, any potential synergies that exist, and help define a priority for implementing the infrastructures in the plan

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce the need for a distributed guideline-based decision sup-port (DSS) process, describe its characteristics, and explain how we implement-ed this process within the European Union?s MobiGuide project. In particular, we have developed a mechanism of sequential, piecemeal projection, i.e., 'downloading' small portions of the guideline from the central DSS server, to the local DSS in the patient's mobile device, which then applies that portion, us-ing the mobile device's local resources. The mobile device sends a callback to the central DSS when it encounters a triggering pattern predefined in the pro-jected module, which leads to an appropriate predefined action by the central DSS, including sending a new projected module, or directly controlling the rest of the workflow. We suggest that such a distributed architecture that explicitly defines a dialog between a central DSS server and a local DSS module, better balances the computational load and exploits the relative advantages of the cen-tral server and of the local mobile device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the mid-long-term after a nuclear accident, the contamination of drinking water sources, fish and other aquatic foodstuffs, irrigation supplies and people?s exposure during recreational activities may create considerable public concern, even though dose assessment may in certain situations indicate lesser importance than for other sources, as clearly experienced in the aftermath of past accidents. In such circumstances there are a number of available countermeasure options, ranging from specific chemical treatment of lakes to bans on fish ingestion or on the use of water for crop irrigation. The potential actions can be broadly grouped into four main categories, chemical, biological, physical and social. In some cases a combination of actions may be the optimal strategy and a decision support system (DSS) like MOIRA-PLUS can be of great help to optimise a decision. A further option is of course not to take any remedial actions, although this may also have significant socio-economic repercussions which should be adequately evaluated. MOIRA-PLUS is designed to allow for a reliable assessment of the long-term evolution of the radiological situation and of feasible alternative rehabilitation strategies, including an objective evaluation of their social, economic and ecological impacts in a rational and comprehensive manner. MOIRA-PLUS also features a decision analysis methodology, making use of multi-attribute analysis, which can take into account the preferences and needs of different types of stakeholders. The main functions and elements of the system are described summarily. Also the conclusions from end-user?s experiences with the system are discussed, including exercises involving the organizations responsible for emergency management and the affected services, as well as different local and regional stakeholders. MOIRAPLUS has proven to be a mature system, user friendly and relatively easy to set up. It can help to better decisionmaking by enabling a realistic evaluation of the complete impacts of possible recovery strategies. Also, the interaction with stakeholders has allowed identifying improvements of the system that have been recently implemented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RESUMEN El apoyo a la selección de especies a la restauración de la vegetación en España en los últimos 40 años se ha basado fundamentalmente en modelos de distribución de especies, también llamados modelos de nicho ecológico, que estiman la probabilidad de presencia de las especies en función de las condiciones del medio físico (clima, suelo, etc.). Con esta tesis se ha intentado contribuir a la mejora de la capacidad predictiva de los modelos introduciendo algunas propuestas metodológicas adaptadas a los datos disponibles actualmente en España y enfocadas al uso de los modelos en la selección de especies. No siempre se dispone de datos a una resolución espacial adecuada para la escala de los proyectos de restauración de la vegetación. Sin embrago es habitual contar con datos de baja resolución espacial para casi todas las especies vegetales presentes en España. Se propone un método de recalibración que actualiza un modelo de regresión logística de baja resolución espacial con una nueva muestra de alta resolución espacial. El método permite obtener predicciones de calidad aceptable con muestras relativamente pequeñas (25 presencias de la especie) frente a las muestras mucho mayores (más de 100 presencias) que requería una estrategia de modelización convencional que no usara el modelo previo. La selección del método estadístico puede influir decisivamente en la capacidad predictiva de los modelos y por esa razón la comparación de métodos ha recibido mucha atención en la última década. Los estudios previos consideraban a la regresión logística como un método inferior a técnicas más modernas como las de máxima entropía. Los resultados de la tesis demuestran que esa diferencia observada se debe a que los modelos de máxima entropía incluyen técnicas de regularización y la versión de la regresión logística usada en las comparaciones no. Una vez incorporada la regularización a la regresión logística usando penalización, las diferencias en cuanto a capacidad predictiva desaparecen. La regresión logística penalizada es, por tanto, una alternativa más para el ajuste de modelos de distribución de especies y está a la altura de los métodos modernos con mejor capacidad predictiva como los de máxima entropía. A menudo, los modelos de distribución de especies no incluyen variables relativas al suelo debido a que no es habitual que se disponga de mediciones directas de sus propiedades físicas o químicas. La incorporación de datos de baja resolución espacial proveniente de mapas de suelo nacionales o continentales podría ser una alternativa. Los resultados de esta tesis sugieren que los modelos de distribución de especies de alta resolución espacial mejoran de forma ligera pero estadísticamente significativa su capacidad predictiva cuando se incorporan variables relativas al suelo procedente de mapas de baja resolución espacial. La validación es una de las etapas fundamentales del desarrollo de cualquier modelo empírico como los modelos de distribución de especies. Lo habitual es validar los modelos evaluando su capacidad predictiva especie a especie, es decir, comparando en un conjunto de localidades la presencia o ausencia observada de la especie con las predicciones del modelo. Este tipo de evaluación no responde a una cuestión clave en la restauración de la vegetación ¿cuales son las n especies más idóneas para el lugar a restaurar? Se ha propuesto un método de evaluación de modelos adaptado a esta cuestión que consiste en estimar la capacidad de un conjunto de modelos para discriminar entre las especies presentes y ausentes de un lugar concreto. El método se ha aplicado con éxito a la validación de 188 modelos de distribución de especies leñosas orientados a la selección de especies para la restauración de la vegetación en España. Las mejoras metodológicas propuestas permiten mejorar la capacidad predictiva de los modelos de distribución de especies aplicados a la selección de especies en la restauración de la vegetación y también permiten ampliar el número de especies para las que se puede contar con un modelo que apoye la toma de decisiones. SUMMARY During the last 40 years, decision support tools for plant species selection in ecological restoration in Spain have been based on species distribution models (also called ecological niche models), that estimate the probability of occurrence of the species as a function of environmental predictors (e.g., climate, soil). In this Thesis some methodological improvements are proposed to contribute to a better predictive performance of such models, given the current data available in Spain and focusing in the application of the models to selection of species for ecological restoration. Fine grained species distribution data are required to train models to be used at the scale of the ecological restoration projects, but this kind of data are not always available for every species. On the other hand, coarse grained data are available for almost every species in Spain. A recalibration method is proposed that updates a coarse grained logistic regression model using a new fine grained updating sample. The method allows obtaining acceptable predictive performance with reasonably small updating sample (25 occurrences of the species), in contrast with the much larger samples (more than 100 occurrences) required for a conventional modeling approach that discards the coarse grained data. The choice of the statistical method may have a dramatic effect on model performance, therefore comparisons of methods have received much interest in the last decade. Previous studies have shown a poorer performance of the logistic regression compared to novel methods like maximum entropy models. The results of this Thesis show that the observed difference is caused by the fact that maximum entropy models include regularization techniques and the versions of logistic regression compared do not. Once regularization has been added to the logistic regression using a penalization procedure, the differences in model performance disappear. Therefore, penalized logistic regression may be considered one of the best performing methods to model species distributions. Usually, species distribution models do not consider soil related predictors because direct measurements of the chemical or physical properties are often lacking. The inclusion of coarse grained soil data from national or continental soil maps could be a reasonable alternative. The results of this Thesis suggest that the performance of the models slightly increase after including soil predictors form coarse grained soil maps. Model validation is a key stage of the development of empirical models, such as species distribution models. The usual way of validating is based on the evaluation of model performance for each species separately, i.e., comparing observed species presences or absence to predicted probabilities in a set of sites. This kind of evaluation is not informative for a common question in ecological restoration projects: which n species are the most suitable for the environment of the site to be restored? A method has been proposed to address this question that estimates the ability of a set of models to discriminate among present and absent species in a evaluation site. The method has been successfully applied to the validation of 188 species distribution models used to support decisions on species selection for ecological restoration in Spain. The proposed methodological approaches improve the predictive performance of the predictive models applied to species selection in ecological restoration and increase the number of species for which a model that supports decisions can be fitted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Automatic blood glucose classification may help specialists to provide a better interpretation of blood glucose data, downloaded directly from patients glucose meter and will contribute in the development of decision support systems for gestational diabetes. This paper presents an automatic blood glucose classifier for gestational diabetes that compares 6 different feature selection methods for two machine learning algorithms: neural networks and decision trees. Three searching algorithms, Greedy, Best First and Genetic, were combined with two different evaluators, CSF and Wrapper, for the feature selection. The study has been made with 6080 blood glucose measurements from 25 patients. Decision trees with a feature set selected with the Wrapper evaluator and the Best first search algorithm obtained the best accuracy: 95.92%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the knowledge model of a distributed decision support system, that has been designed for the management of a national network in Ukraine. It shows how advanced Artificial Intelligence techniques (multiagent systems and knowledge modelling) have been applied to solve this real-world decision support problem: on the one hand its distributed nature, implied by different loci of decision-making at the network nodes, suggested to apply a multiagent solution; on the other, due to the complexity of problem-solving for local network administration, it was useful to apply knowledge modelling techniques, in order to structure the different knowledge types and reasoning processes involved. The paper sets out from a description of our particular management problem. Subsequently, our agent model is described, pointing out the local problem-solving and coordination knowledge models. Finally, the dynamics of the approach is illustrated by an example.