25 resultados para ACTIVATED GAAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low optical degradation in GaInAsN(Sb)/GaAs quantum dots (QDs) p–i–n structures emitting up to 1.55 μm is presented in this paper. We obtain emission at different energies by means of varying N content from 1 to 4%. The samples show a low photoluminescence (PL) intensity degradation of only 1 order of magnitude when they are compared with pure InGaAs QD structures, even for an emission wavelength as large as 1.55 μm. The optimization studies of these structures for emission at 1.55 μm are reported in this work. High surface density and homogeneity in the QD layers are achieved for 50% In content by rapid decrease in the growth temperature after the formation of the nanostructures. Besides, the effect of N and Sb incorporation in the redshift and PL intensity of the samples is studied by post-growth rapid thermal annealing treatments. As a general conclusion, we observe that the addition of Sb to QD with low N mole fraction is more efficient to reach 1.55 μm and high PL intensity than using high N incorporation in the QD. Also, the growth temperature is determined to be an important parameter to obtain good emission characteristics. Finally, we report room temperature PL emission of InGaAsN(Sb)/GaAs at 1.4 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some of the results of a method to determine the main reliability functions of concentrator solar cells. High concentrator GaAs single junction solar cells have been tested in an Accelerated Life Test. The method can be directly applied to multi-junction solar cells. The main conclusions of this test carried out show that these solar cells are robust devices with a very low probability of failure caused by degradation during their operation life (more than 30 years). The evaluation of the probability operation function (i.e. the reliability function R(t)) is obtained for two nominal operation conditions of these cells, namely simulated concentration ratios of 700 and 1050 suns. Preliminary determination of the Mean Time to Failure indicates a value much higher than the intended operation life time of the concentrator cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong high-order Rayleigh or Sezawa modes, in addition to the fundamental Rayleigh mode, have been observed in ZnO/GaAs(001) systems along the [110] propagation direction of GaAs. The dispersion of the different acoustic waves has been calculated and compared to the experimental data. The bandwidth and impedance matching characteristics of the multimode SAW delay lines operating at high frequencies (2.5-3.5 GHz regime) have been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical and structural properties of InAs/GaAs quantum dots (QD) are strongly modified through the use of a thin (~ 5 nm) GaAsSb(N) capping layer. In the case of GaAsSb-capped QDs, cross-sectional scanning tunnelling microscopy measurements show that the QD height can be controllably tuned through the Sb content up to ~ 14 % Sb. The increased QD height (together with the reduced strain) gives rise to a strong red shift and a large enhancement of the photoluminescence (PL) characteristics. This is due to improved carrier confinement and reduced sensitivity of the excitonic bandgap to QD size fluctuations within the ensemble. Moreover, the PL degradation with temperature is strongly reduced in the presence of Sb. Despite this, emission in the 1.5 !lm region with these structures is only achieved for high Sb contents and a type-II band alignment that degrades the PL. Adding small amounts of N to the GaAsSb capping layer allows to progressively reduce the QD-barrier conduction band offset. This different strategy to red shift the PL allows reaching 1.5 !lm with moderate Sb contents, keeping therefore a type-I alignment. Nevertheless, the PL emission is progressively degraded when the N content in the capping layer is increased

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limiting efficiencies of GaAs solar cells when used under concentrated sunlight are calculated. The benefits to be expected from applying techniques which restrict the angle of acceptance of the cell are determined. It is concluded that when the acceptance angle is restricted the emission of the luminescent photons and therefore the associated current loss are reduced. A limiting efficiency close to 39% results for concentration ratios of about 1000 suns AM1.5 direct. For lower concentration ratios, the limiting efficiency decreases if Auger recombination is also taken into account

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new device structure to improve the performance of concentrator GaAs solar cells is described and the first experimental results are reported. The reason for such an improvement relies on a drastic reduction of the shadowing and series resistance losses based on the possibility of back contacting the emitter region of the solar cell. The experimental results obtained with devices of these types, with a simplified structure, fabricated by liquid phase epitaxy, demonstrate the feasibility and correct operation of the proposed back contact of the emitter of the cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, angle-resolved X-ray photoelectron spectroscopy is used to explore the extension and nature of a GaAs/GaInP heterointerface. This bilayer structure constitutes a very common interface in a multilayered III-V solar cell. Our results show a wide indium penetration into the GaAs layer, while phosphorous diffusion is much less important. The physico-chemical nature of such interface and its depth could deleteriously impact the solar cell performance. Our results probe the formation of spurious phases which may profoundly affect the interface behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBAT16). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBAT16 was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBAT16 (average pore diameter of 56.5 Å). The Brunauer-Emmett-Teller (BET) surface area of the SBAT16 was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBAT16 adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBAT16 where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Implications: Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Evaluating the reliability, warranty period, and power degradation of high concentration solar cells is crucial to introducing this new technology to the market. The reliability of high concentration GaAs solar cells, as measured in temperature accelerated life tests, is described in this paper. GaAs cells were tested under high thermal accelerated conditions that emulated operation under 700 or 1050 suns over a period exceeding 10 000 h. Progressive power degradation was observed, although no catastrophic failures occurred. An Arrhenius activation energy of 1.02 eV was determined from these tests. The solar cell reliability [R(t)] under working conditions of 65°C was evaluated for different failure limits (1–10% power loss). From this reliability function, the mean time to failure and the warranty time were evaluated. Solar cell temperature appeared to be the primary determinant of reliability and warranty period, with concentration being the secondary determinant. A 30-year warranty for these 1 mm2-sized GaAs cells (manufactured according to a light emitting diode-like approach) may be offered for both cell concentrations (700 and 1050 suns) if the solar cell is operated at a working temperature of 65°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-power high-efficiency laser power transmission system at 100m based on an optimized multi-cell GaAs converter capable of supplying 9.7W of electricity is demonstrated. An I-V testing system integrated with a data acquisition circuit and an analysis software is designed to measure the efficiency and the I-V characteristics of the laser power converter (LPC). The dependencies of the converter’s efficiency with respect to wavelength, laser intensity and temperature are analyzed. A diode laser with 793nm of wavelength and 24W of power is used to test the LPC and the software. The maximum efficiency of the LPC is 48.4% at an input laser power of 8W at room temperature. When the input laser power is 24W (laser intensity of 60000W/m2), the efficiency is 40.4% and the output voltage is 4 V. The overall efficiency from electricity to electricity is 11.6%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, all the operating principles of intermediate band behaviour have been demonstrated in InAs/GaAs quantum dot (QD) solar cells. Having passed this hurdle, a new stage of research is underway, whose goal is to deliver QD solar cells with efficiencies above those of state-of-the-art single-gap devices. In this work, we demonstrate that this is possible, using the present InAs/GaAs QD system, if the QDs are made to be radiatively dominated, and if absorption enhancements are achieved by a combination of increasing the number of QDs and light trapping. A quantitative prediction is also made of the absorption enhancements required, suggesting that a 30 fold increase in the number of QDs and a light trapping enhancement of 10 are sufficient. Finally, insight is given into the relative merits of absorption enhancement via increasing QD numbers and via light trapping.