2 resultados para wind generated electricity
em Massachusetts Institute of Technology
Resumo:
The simulation of subsonic aeroacoustic problems such as the flow-generated sound of wind instruments is well suited for parallel computing on a cluster of non-dedicated workstations. Simulations are demonstrated which employ 20 non-dedicated Hewlett-Packard workstations (HP9000/715), and achieve comparable performance on this problem as a 64-node CM-5 dedicated supercomputer with vector units. The success of the present approach depends on the low communication requirements of the problem (low communication to computation ratio) which arise from the coarse-grain decomposition of the problem and the use of local-interaction methods. Many important problems may be suitable for this type of parallel computing including computer vision, circuit simulation, and other subsonic flow problems.
Resumo:
Direct simulations of wind musical instruments using the compressible Navier Stokes equations have recently become possible through the use of parallel computing and through developments in numerical methods. As a first demonstration, the flow of air and the generation of musical tones inside a soprano recorder are simulated numerically. In addition, physical measurements are made of the acoustic signal generated by the recorder at different blowing speeds. The comparison between simulated and physically measured behavior is encouraging and points towards ways of improving the simulations.