7 resultados para tree-augmented-Naive Bayes structure
em Massachusetts Institute of Technology
Resumo:
There are numerous text documents available in electronic form. More and more are becoming available every day. Such documents represent a massive amount of information that is easily accessible. Seeking value in this huge collection requires organization; much of the work of organizing documents can be automated through text classification. The accuracy and our understanding of such systems greatly influences their usefulness. In this paper, we seek 1) to advance the understanding of commonly used text classification techniques, and 2) through that understanding, improve the tools that are available for text classification. We begin by clarifying the assumptions made in the derivation of Naive Bayes, noting basic properties and proposing ways for its extension and improvement. Next, we investigate the quality of Naive Bayes parameter estimates and their impact on classification. Our analysis leads to a theorem which gives an explanation for the improvements that can be found in multiclass classification with Naive Bayes using Error-Correcting Output Codes. We use experimental evidence on two commonly-used data sets to exhibit an application of the theorem. Finally, we show fundamental flaws in a commonly-used feature selection algorithm and develop a statistics-based framework for text feature selection. Greater understanding of Naive Bayes and the properties of text allows us to make better use of it in text classification.
Resumo:
An increasing number of parameter estimation tasks involve the use of at least two information sources, one complete but limited, the other abundant but incomplete. Standard algorithms such as EM (or em) used in this context are unfortunately not stable in the sense that they can lead to a dramatic loss of accuracy with the inclusion of incomplete observations. We provide a more controlled solution to this problem through differential equations that govern the evolution of locally optimal solutions (fixed points) as a function of the source weighting. This approach permits us to explicitly identify any critical (bifurcation) points leading to choices unsupported by the available complete data. The approach readily applies to any graphical model in O(n^3) time where n is the number of parameters. We use the naive Bayes model to illustrate these ideas and demonstrate the effectiveness of our approach in the context of text classification problems.
Resumo:
We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.
Resumo:
The application of augmented reality (AR) technology for assembly guidance is a novel approach in the traditional manufacturing domain. In this paper, we propose an AR approach for assembly guidance using a virtual interactive tool that is intuitive and easy to use. The virtual interactive tool, termed the Virtual Interaction Panel (VirIP), involves two tasks: the design of the VirIPs and the real-time tracking of an interaction pen using a Restricted Coulomb Energy (RCE) neural network. The VirIP includes virtual buttons, which have meaningful assembly information that can be activated by an interaction pen during the assembly process. A visual assembly tree structure (VATS) is used for information management and assembly instructions retrieval in this AR environment. VATS is a hierarchical tree structure that can be easily maintained via a visual interface. This paper describes a typical scenario for assembly guidance using VirIP and VATS. The main characteristic of the proposed AR system is the intuitive way in which an assembly operator can easily step through a pre-defined assembly plan/sequence without the need of any sensor schemes or markers attached on the assembly components.
Resumo:
The Transit network provides high-speed, low-latency, fault-tolerant interconnect for high-performance, multiprocessor computers. The basic connection scheme for Transit uses bidelta style, multistage networks to support up to 256 processors. Scaling to larger machines by simply extending the bidelta network topology will result in a uniform degradation of network latency between all processors. By employing a fat-tree network structure in larger systems, the network provides locality and universality properties which can help minimize the impact of scaling on network latency. This report details the topology and construction issues associated with integrating Transit routing technology into fat-tree interconnect topologies.
Resumo:
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EMand the Minimum Spanning Tree algorithm to find the ML and MAP mixtureof trees for a variety of priors, including the Dirichlet and the MDL priors.
Resumo:
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors. We also show that the single tree classifier acts like an implicit feature selector, thus making the classification performance insensitive to irrelevant attributes. Experimental results demonstrate the excellent performance of the new model both in density estimation and in classification.