1 resultado para semi-deciduous forest
em Massachusetts Institute of Technology
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Adam Mickiewicz University Repository (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (34)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Câmara dos Deputados (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (100)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (232)
- Collection Of Biostatistics Research Archive (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (6)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (47)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (4)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (105)
- Indian Institute of Science - Bangalore - Índia (143)
- Infoteca EMBRAPA (11)
- Instituto Politécnico de Bragança (1)
- Massachusetts Institute of Technology (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (11)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Queensland University of Technology - ePrints Archive (93)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositorio Institucional de la Universidad Nacional Agraria (5)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (59)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (4)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- University of Queensland eSpace - Australia (1)
- University of Washington (1)
Resumo:
In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.