4 resultados para graphs
em Massachusetts Institute of Technology
Resumo:
We present a constant-factor approximation algorithm for computing an embedding of the shortest path metric of an unweighted graph into a tree, that minimizes the multiplicative distortion.
Resumo:
This report describes research about flow graphs - labeled, directed, acyclic graphs which abstract representations used in a variety of Artificial Intelligence applications. Flow graphs may be derived from flow grammars much as strings may be derived from string grammars; this derivation process forms a useful model for the stepwise refinement processes used in programming and other engineering domains. The central result of this report is a parsing algorithm for flow graphs. Given a flow grammar and a flow graph, the algorithm determines whether the grammar generates the graph and, if so, finds all possible derivations for it. The author has implemented the algorithm in LISP. The intent of this report is to make flow-graph parsing available as an analytic tool for researchers in Artificial Intelligence. The report explores the intuitions behind the parsing algorithm, contains numerous, extensive examples of its behavior, and provides some guidance for those who wish to customize the algorithm to their own uses.
Resumo:
We introduce a new learning problem: learning a graph by piecemeal search, in which the learner must return every so often to its starting point (for refueling, say). We present two linear-time piecemeal-search algorithms for learning city-block graphs: grid graphs with rectangular obstacles.
Resumo:
We seek to both detect and segment objects in images. To exploit both local image data as well as contextual information, we introduce Boosted Random Fields (BRFs), which uses Boosting to learn the graph structure and local evidence of a conditional random field (CRF). The graph structure is learned by assembling graph fragments in an additive model. The connections between individual pixels are not very informative, but by using dense graphs, we can pool information from large regions of the image; dense models also support efficient inference. We show how contextual information from other objects can improve detection performance, both in terms of accuracy and speed, by using a computational cascade. We apply our system to detect stuff and things in office and street scenes.