3 resultados para fato real e irreal

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a machine vision system that classifies reflectance properties of surfaces such as metal, plastic, or paper, under unknown real-world illumination. We demonstrate performance of our algorithm for surfaces of arbitrary geometry. Reflectance estimation under arbitrary omnidirectional illumination proves highly underconstrained. Our reflectance estimation algorithm succeeds by learning relationships between surface reflectance and certain statistics computed from an observed image, which depend on statistical regularities in the spatial structure of real-world illumination. Although the algorithm assumes known geometry, its statistical nature makes it robust to inaccurate geometry estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a knowledge-base system in which the information is stored in a network of small parallel processing elements ??de and link units ??ich are controlled by an external serial computer. This network is similar to the semantic network system of Quillian, but is much more tightly controlled. Such a network can perform certain critical deductions and searches very quickly; it avoids many of the problems of current systems, which must use complex heuristics to limit and guided their searches. It is argued (with examples) that the key operation in a knowledge-base system is the intersection of large explicit and semi-explicit sets. The parallel network system does this in a small, essentially constant number of cycles; a serial machine takes time proportional to the size of the sets, except in special cases.