12 resultados para face to face
em Massachusetts Institute of Technology
Resumo:
The central challenge in face recognition lies in understanding the role different facial features play in our judgments of identity. Notable in this regard are the relative contributions of the internal (eyes, nose and mouth) and external (hair and jaw-line) features. Past studies that have investigated this issue have typically used high-resolution images or good-quality line drawings as facial stimuli. The results obtained are therefore most relevant for understanding the identification of faces at close range. However, given that real-world viewing conditions are rarely optimal, it is also important to know how image degradations, such as loss of resolution caused by large viewing distances, influence our ability to use internal and external features. Here, we report experiments designed to address this issue. Our data characterize how the relative contributions of internal and external features change as a function of image resolution. While we replicated results of previous studies that have shown internal features of familiar faces to be more useful for recognition than external features at high resolution, we found that the two feature sets reverse in importance as resolution decreases. These results suggest that the visual system uses a highly non-linear cue-fusion strategy in combining internal and external features along the dimension of image resolution and that the configural cues that relate the two feature sets play an important role in judgments of facial identity.
Resumo:
While researchers in computer vision and pattern recognition have worked on automatic techniques for recognizing faces for the last 20 years, most systems specialize on frontal views of the face. We present a face recognizer that works under varying pose, the difficult part of which is to handle face rotations in depth. Building on successful template-based systems, our basic approach is to represent faces with templates from multiple model views that cover different poses from the viewing sphere. Our system has achieved a recognition rate of 98% on a data base of 62 people containing 10 testing and 15 modelling views per person.
Resumo:
In this paper three problems related to the analysis of facial images are addressed: the illuminant direction, the compensation of illumination effects and, finally, the recovery of the pose of the face, restricted to in-depth rotations. The solutions proposed for these problems rely on the use of computer graphics techniques to provide images of faces under different illumination and pose, starting from a database of frontal views under frontal illumination.
Resumo:
If we are provided a face database with only one example view per person, is it possible to recognize new views of them under a variety of different poses, especially views rotated in depth from the original example view? We investigate using prior knowledge about faces plus each single example view to generate virtual views of each person, or views of the face as seen from different poses. Prior knowledge of faces is represented in an example-based way, using 2D views of a prototype face seen rotating in depth. The synthesized virtual views are evaluated as example views in a view-based approach to pose-invariant face recognition. They are shown to improve the recognition rate over the scenario where only the single real view is used.
Resumo:
The correspondence problem in computer vision is basically a matching task between two or more sets of features. In this paper, we introduce a vectorized image representation, which is a feature-based representation where correspondence has been established with respect to a reference image. This representation has two components: (1) shape, or (x, y) feature locations, and (2) texture, defined as the image grey levels mapped onto the standard reference image. This paper explores an automatic technique for "vectorizing" face images. Our face vectorizer alternates back and forth between computation steps for shape and texture, and a key idea is to structure the two computations so that each one uses the output of the other. A hierarchical coarse-to-fine implementation is discussed, and applications are presented to the problems of facial feature detection and registration of two arbitrary faces.
Resumo:
The problem of automatic face recognition is to visually identify a person in an input image. This task is performed by matching the input face against the faces of known people in a database of faces. Most existing work in face recognition has limited the scope of the problem, however, by dealing primarily with frontal views, neutral expressions, and fixed lighting conditions. To help generalize existing face recognition systems, we look at the problem of recognizing faces under a range of viewpoints. In particular, we consider two cases of this problem: (i) many example views are available of each person, and (ii) only one view is available per person, perhaps a driver's license or passport photograph. Ideally, we would like to address these two cases using a simple view-based approach, where a person is represented in the database by using a number of views on the viewing sphere. While the view-based approach is consistent with case (i), for case (ii) we need to augment the single real view of each person with synthetic views from other viewpoints, views we call 'virtual views'. Virtual views are generated using prior knowledge of face rotation, knowledge that is 'learned' from images of prototype faces. This prior knowledge is used to effectively rotate in depth the single real view available of each person. In this thesis, I present the view-based face recognizer, techniques for synthesizing virtual views, and experimental results using real and virtual views in the recognizer.
Resumo:
In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.
Resumo:
Poggio and Vetter (1992) showed that learning one view of a bilaterally symmetric object could be sufficient for its recognition, if this view allows the computation of a symmetric, "virtual," view. Faces are roughly bilaterally symmetric objects. Learning a side-view--which always has a symmetric view--should allow for better generalization performances than learning the frontal view. Two psychophysical experiments tested these predictions. Stimuli were views of shaded 3D models of laser-scanned faces. The first experiment tested whether a particular view of a face was canonical. The second experiment tested which single views of a face give rise to best generalization performances. The results were compatible with the symmetry hypothesis: Learning a side view allowed better generalization performances than learning the frontal view.
Resumo:
Impressive claims have been made for the performance of the SNoW algorithm on face detection tasks by Yang et. al. [7]. In particular, by looking at both their results and those of Heisele et. al. [3], one could infer that the SNoW system performed substantially better than an SVM-based system, even when the SVM used a polynomial kernel and the SNoW system used a particularly simplistic 'primitive' linear representation. We evaluated the two approaches in a controlled experiment, looking directly at performance on a simple, fixed-sized test set, isolating out 'infrastructure' issues related to detecting faces at various scales in large images. We found that SNoW performed about as well as linear SVMs, and substantially worse than polynomial SVMs.
Resumo:
We present a new method to select features for a face detection system using Support Vector Machines (SVMs). In the first step we reduce the dimensionality of the input space by projecting the data into a subset of eigenvectors. The dimension of the subset is determined by a classification criterion based on minimizing a bound on the expected error probability of an SVM. In the second step we select features from the SVM feature space by removing those that have low contributions to the decision function of the SVM.
Resumo:
One of the key challenges in face perception lies in determining the contribution of different cues to face identification. In this study, we focus on the role of color cues. Although color appears to be a salient attribute of faces, past research has suggested that it confers little recognition advantage for identifying people. Here we report experimental results suggesting that color cues do play a role in face recognition and their contribution becomes evident when shape cues are degraded. Under such conditions, recognition performance with color images is significantly better than that with grayscale images. Our experimental results also indicate that the contribution of color may lie not so much in providing diagnostic cues to identity as in aiding low-level image-analysis processes such as segmentation.
Resumo:
Understanding how the human visual system recognizes objects is one of the key challenges in neuroscience. Inspired by a large body of physiological evidence (Felleman and Van Essen, 1991; Hubel and Wiesel, 1962; Livingstone and Hubel, 1988; Tso et al., 2001; Zeki, 1993), a general class of recognition models has emerged which is based on a hierarchical organization of visual processing, with succeeding stages being sensitive to image features of increasing complexity (Hummel and Biederman, 1992; Riesenhuber and Poggio, 1999; Selfridge, 1959). However, these models appear to be incompatible with some well-known psychophysical results. Prominent among these are experiments investigating recognition impairments caused by vertical inversion of images, especially those of faces. It has been reported that faces that differ "featurally" are much easier to distinguish when inverted than those that differ "configurally" (Freire et al., 2000; Le Grand et al., 2001; Mondloch et al., 2002) ??finding that is difficult to reconcile with the aforementioned models. Here we show that after controlling for subjects' expectations, there is no difference between "featurally" and "configurally" transformed faces in terms of inversion effect. This result reinforces the plausibility of simple hierarchical models of object representation and recognition in cortex.