9 resultados para eventi, connessioni, Node JS, event loop, thread, aggregazione

em Massachusetts Institute of Technology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report describes Processor Coupling, a mechanism for controlling multiple ALUs on a single integrated circuit to exploit both instruction-level and inter-thread parallelism. A compiler statically schedules individual threads to discover available intra-thread instruction-level parallelism. The runtime scheduling mechanism interleaves threads, exploiting inter-thread parallelism to maintain high ALU utilization. ALUs are assigned to threads on a cycle byscycle basis, and several threads can be active concurrently. Simulation results show that Processor Coupling performs well both on single threaded and multi-threaded applications. The experiments address the effects of memory latencies, function unit latencies, and communication bandwidth between function units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The M-Machine is an experimental multicomputer being developed to test architectural concepts motivated by the constraints of modern semiconductor technology and the demands of programming systems. The M- Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing system yields fast communication and synchronization between nodes. Rapid access to remote memory is provided transparently to the user with a combination of hardware and software mechanisms. This paper presents the architecture of the M-Machine and describes how its mechanisms maximize both single thread performance and overall system throughput.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis proposes a computational model of how children may come to learn the meanings of words in their native language. The proposed model is divided into two separate components. One component produces semantic descriptions of visually observed events while the other correlates those descriptions with co-occurring descriptions of those events in natural language. The first part of this thesis describes three implementations of the correlation process whereby representations of the meanings of whole utterances can be decomposed into fragments assigned as representations of the meanings of individual words. The second part of this thesis describes an implemented computer program that recognizes the occurrence of simple spatial motion events in simulated video input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel shared-memory machines with hundreds or thousands of processor-memory nodes have been built; in the future we will see machines with millions or even billions of nodes. Associated with such large systems is a new set of design challenges. Many problems must be addressed by an architecture in order for it to be successful; of these, we focus on three in particular. First, a scalable memory system is required. Second, the network messaging protocol must be fault-tolerant. Third, the overheads of thread creation, thread management and synchronization must be extremely low. This thesis presents the complete system design for Hamal, a shared-memory architecture which addresses these concerns and is directly scalable to one million nodes. Virtual memory and distributed objects are implemented in a manner that requires neither inter-node synchronization nor the storage of globally coherent translations at each node. We develop a lightweight fault-tolerant messaging protocol that guarantees message delivery and idempotence across a discarding network. A number of hardware mechanisms provide efficient support for massive multithreading and fine-grained synchronization. Experiments are conducted in simulation, using a trace-driven network simulator to investigate the messaging protocol and a cycle-accurate simulator to evaluate the Hamal architecture. We determine implementation parameters for the messaging protocol which optimize performance. A discarding network is easier to design and can be clocked at a higher rate, and we find that with this protocol its performance can approach that of a non-discarding network. Our simulations of Hamal demonstrate the effectiveness of its thread management and synchronization primitives. In particular, we find register-based synchronization to be an extremely efficient mechanism which can be used to implement a software barrier with a latency of only 523 cycles on a 512 node machine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report explores the design and control issues associated with a brushless actuator capable of achieving extremely high torque accuracy. Models of several different motor - sensor configurations were studied to determine dynamic characteristics. A reaction torque sensor fixed to the motor stator was implemented to decouple the transmission dynamics from the sensor. This resulted in a compact actuator with higher bandwidth and precision than could be obtained with an inline or joint sensor. Testing demonstrated that closed-loop torque accuracy was within 0.1%, and the mechanical bandwidth approached 300 Hz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a new statistical, model-based approach to building a contact state observer. The observer uses measurements of the contact force and position, and prior information about the task encoded in a graph, to determine the current location of the robot in the task configuration space. Each node represents what the measurements will look like in a small region of configuration space by storing a predictive, statistical, measurement model. This approach assumes that the measurements are statistically block independent conditioned on knowledge of the model, which is a fairly good model of the actual process. Arcs in the graph represent possible transitions between models. Beam Viterbi search is used to match measurement history against possible paths through the model graph in order to estimate the most likely path for the robot. The resulting approach provides a new decision process that can be use as an observer for event driven manipulation programming. The decision procedure is significantly more robust than simple threshold decisions because the measurement history is used to make decisions. The approach can be used to enhance the capabilities of autonomous assembly machines and in quality control applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling tasks to efficiently use the available processor resources is crucial to minimizing the runtime of applications on shared-memory parallel processors. One factor that contributes to poor processor utilization is the idle time caused by long latency operations, such as remote memory references or processor synchronization operations. One way of tolerating this latency is to use a processor with multiple hardware contexts that can rapidly switch to executing another thread of computation whenever a long latency operation occurs, thus increasing processor utilization by overlapping computation with communication. Although multiple contexts are effective for tolerating latency, this effectiveness can be limited by memory and network bandwidth, by cache interference effects among the multiple contexts, and by critical tasks sharing processor resources with less critical tasks. This thesis presents techniques that increase the effectiveness of multiple contexts by intelligently scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache resources. This thesis proposes thread prioritization as a fundamental mechanism for directing the thread schedule on a multiple-context processor. A priority is assigned to each thread either statically or dynamically and is used by the thread scheduler to decide which threads to load in the contexts, and to decide which context to switch to on a context switch. We develop a multiple-context model that integrates both cache and network effects, and shows how thread prioritization can both maintain high processor utilization, and limit increases in critical path runtime caused by multithreading. The model also shows that in order to be effective in bandwidth limited applications, thread prioritization must be extended to prioritize memory requests. We show how simple hardware can prioritize the running of threads in the multiple contexts, and the issuing of requests to both the local memory and the network. Simulation experiments show how thread prioritization is used in a variety of applications. Thread prioritization can improve the performance of synchronization primitives by minimizing the number of processor cycles wasted in spinning and devoting more cycles to critical threads. Thread prioritization can be used in combination with other techniques to improve cache performance and minimize cache interference between different working sets in the cache. For applications that are critical path limited, thread prioritization can improve performance by allowing processor resources to be devoted preferentially to critical threads. These experimental results show that thread prioritization is a mechanism that can be used to implement a wide range of scheduling policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The furious pace of Moore's Law is driving computer architecture into a realm where the the speed of light is the dominant factor in system latencies. The number of clock cycles to span a chip are increasing, while the number of bits that can be accessed within a clock cycle is decreasing. Hence, it is becoming more difficult to hide latency. One alternative solution is to reduce latency by migrating threads and data, but the overhead of existing implementations has previously made migration an unserviceable solution so far. I present an architecture, implementation, and mechanisms that reduces the overhead of migration to the point where migration is a viable supplement to other latency hiding mechanisms, such as multithreading. The architecture is abstract, and presents programmers with a simple, uniform fine-grained multithreaded parallel programming model with implicit memory management. In other words, the spatial nature and implementation details (such as the number of processors) of a parallel machine are entirely hidden from the programmer. Compiler writers are encouraged to devise programming languages for the machine that guide a programmer to express their ideas in terms of objects, since objects exhibit an inherent physical locality of data and code. The machine implementation can then leverage this locality to automatically distribute data and threads across the physical machine by using a set of high performance migration mechanisms. An implementation of this architecture could migrate a null thread in 66 cycles -- over a factor of 1000 improvement over previous work. Performance also scales well; the time required to move a typical thread is only 4 to 5 times that of a null thread. Data migration performance is similar, and scales linearly with data block size. Since the performance of the migration mechanism is on par with that of an L2 cache, the implementation simulated in my work has no data caches and relies instead on multithreading and the migration mechanism to hide and reduce access latencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If we are to understand how we can build machines capable of broad purpose learning and reasoning, we must first aim to build systems that can represent, acquire, and reason about the kinds of commonsense knowledge that we humans have about the world. This endeavor suggests steps such as identifying the kinds of knowledge people commonly have about the world, constructing suitable knowledge representations, and exploring the mechanisms that people use to make judgments about the everyday world. In this work, I contribute to these goals by proposing an architecture for a system that can learn commonsense knowledge about the properties and behavior of objects in the world. The architecture described here augments previous machine learning systems in four ways: (1) it relies on a seven dimensional notion of context, built from information recently given to the system, to learn and reason about objects' properties; (2) it has multiple methods that it can use to reason about objects, so that when one method fails, it can fall back on others; (3) it illustrates the usefulness of reasoning about objects by thinking about their similarity to other, better known objects, and by inferring properties of objects from the categories that they belong to; and (4) it represents an attempt to build an autonomous learner and reasoner, that sets its own goals for learning about the world and deduces new facts by reflecting on its acquired knowledge. This thesis describes this architecture, as well as a first implementation, that can learn from sentences such as ``A blue bird flew to the tree'' and ``The small bird flew to the cage'' that birds can fly. One of the main contributions of this work lies in suggesting a further set of salient ideas about how we can build broader purpose commonsense artificial learners and reasoners.