4 resultados para dually discrete space
em Massachusetts Institute of Technology
Resumo:
When triangulating a belief network we aim to obtain a junction tree of minimum state space. Searching for the optimal triangulation can be cast as a search over all the permutations of the network's vaeriables. Our approach is to embed the discrete set of permutations in a convex continuous domain D. By suitably extending the cost function over D and solving the continous nonlinear optimization task we hope to obtain a good triangulation with respect to the aformentioned cost. In this paper we introduce an upper bound to the total junction tree weight as the cost function. The appropriatedness of this choice is discussed and explored by simulations. Then we present two ways of embedding the new objective function into continuous domains and show that they perform well compared to the best known heuristic.
Resumo:
We derive a new representation for a function as a linear combination of local correlation kernels at optimal sparse locations and discuss its relation to PCA, regularization, sparsity principles and Support Vector Machines. We first review previous results for the approximation of a function from discrete data (Girosi, 1998) in the context of Vapnik"s feature space and dual representation (Vapnik, 1995). We apply them to show 1) that a standard regularization functional with a stabilizer defined in terms of the correlation function induces a regression function in the span of the feature space of classical Principal Components and 2) that there exist a dual representations of the regression function in terms of a regularization network with a kernel equal to a generalized correlation function. We then describe the main observation of the paper: the dual representation in terms of the correlation function can be sparsified using the Support Vector Machines (Vapnik, 1982) technique and this operation is equivalent to sparsify a large dictionary of basis functions adapted to the task, using a variation of Basis Pursuit De-Noising (Chen, Donoho and Saunders, 1995; see also related work by Donahue and Geiger, 1994; Olshausen and Field, 1995; Lewicki and Sejnowski, 1998). In addition to extending the close relations between regularization, Support Vector Machines and sparsity, our work also illuminates and formalizes the LFA concept of Penev and Atick (1996). We discuss the relation between our results, which are about regression, and the different problem of pattern classification.
Resumo:
The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to: • Provide technologies and methods that will allow the creation of flexible, upgradable space systems, • Create a “clean sheet” approach to space systems architecture determination and design, including the incorporation of risk, uncertainty, and flexibility issues, and • Consider the impact of national space policy on the above. This report covers the last two goals, and demonstrates that the effort was largely successful.
Resumo:
Caches are known to consume up to half of all system power in embedded processors. Co-optimizing performance and power of the cache subsystems is therefore an important step in the design of embedded systems, especially those employing application specific instruction processors. In this project, we propose an analytical cache model that succinctly captures the miss performance of an application over the entire cache parameter space. Unlike exhaustive trace driven simulation, our model requires that the program be simulated once so that a few key characteristics can be obtained. Using these application-dependent characteristics, the model can span the entire cache parameter space consisting of cache sizes, associativity and cache block sizes. In our unified model, we are able to cater for direct-mapped, set and fully associative instruction, data and unified caches. Validation against full trace-driven simulations shows that our model has a high degree of fidelity. Finally, we show how the model can be coupled with a power model for caches such that one can very quickly decide on pareto-optimal performance-power design points for rapid design space exploration.