15 resultados para complex problem solving

em Massachusetts Institute of Technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The STUDENT problem solving system, programmed in LISP, accepts as input a comfortable but restricted subset of English which can express a wide variety of algebra story problems. STUDENT finds the solution to a large class of these problems. STUDENT can utilize a store of global information not specific to any one problem, and may make assumptions about the interpretation of ambiguities in the wording of the problem being solved. If it uses such information or makes any assumptions, STUDENT communicates this fact to the user. The thesis includes a summary of other English language questions-answering systems. All these systems, and STUDENT, are evaluated according to four standard criteria. The linguistic analysis in STUDENT is a first approximation to the analytic portion of a semantic theory of discourse outlined in the thesis. STUDENT finds the set of kernel sentences which are the base of the input discourse, and transforms this sequence of kernel sentences into a set of simultaneous equations which form the semantic base of the STUDENT system. STUDENT then tries to solve this set of equations for the values of requested unknowns. If it is successful it gives the answers in English. If not, STUDENT asks the user for more information, and indicates the nature of the desired information. The STUDENT system is a first step toward natural language communication with computers. Further work on the semantic theory proposed should result in much more sophisticated systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis developed here is that reasoning programs which take care to record the logical justifications for program beliefs can apply several powerful, but simple, domain-independent algorithms to (1) maintain the consistency of program beliefs, (2) realize substantial search efficiencies, and (3) automatically summarize explanations of program beliefs. These algorithms are the recorded justifications to maintain the consistency and well founded basis of the set of beliefs. The set of beliefs can be efficiently updated in an incremental manner when hypotheses are retracted and when new information is discovered. The recorded justifications also enable the pinpointing of exactly whose assumptions which support any particular belief. The ability to pinpoint the underlying assumptions is the basis for an extremely powerful domain-independent backtracking method. This method, called Dependency-Directed Backtracking, offers vastly improved performance over traditional backtracking algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report outlines the problem of intelligent failure recovery in a problem-solver for electrical design. We want our problem solver to learn as much as it can from its mistakes. Thus we cast the engineering design process on terms of Problem Solving by Debugging Almost-Right Plans, a paradigm for automatic problem solving based on the belief that creation and removal of "bugs" is an unavoidable part of the process of solving a complex problem. The process of localization and removal of bugs called for by the PSBDARP theory requires an approach to engineering analysis in which every result has a justification which describes the exact set of assumptions it depends upon. We have developed a program based on Analysis by Propagation of Constraints which can explain the basis of its deductions. In addition to being useful to a PSBDARP designer, these justifications are used in Dependency-Directed Backtracking to limit the combinatorial search in the analysis routines. Although the research we will describe is explicitly about electrical circuits, we believe that similar principles and methods are employed by other kinds of engineers, including computer programmers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes BUILD, a computer program which generates plans for building specified structures out of simple objects such as toy blocks. A powerful heuristic control structure enables BUILD to use a number of sophisticated construction techniques in its plans. Among these are the incorporation of pre-existing structure into the final design, pre-assembly of movable sub-structures on the table, and use of the extra blocks as temporary supports and counterweights in the course of construction. BUILD does its planning in a modeled 3-space in which blocks of various shapes and sizes can be represented in any orientation and location. The modeling system can maintain several world models at once, and contains modules for displaying states, testing them for inter-object contact and collision, and for checking the stability of complex structures involving frictional forces. Various alternative approaches are discussed, and suggestions are included for the extension of BUILD-like systems to other domains. Also discussed are the merits of BUILD's implementation language, CONNIVER, for this type of problem solving.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How can we insure that knowledge embedded in a program is applied effectively? Traditionally the answer to this question has been sought in different problem solving paradigms and in different approaches to encoding and indexing knowledge. Each of these is useful with a certain variety of problem, but they all share a common problem: they become ineffective in the face of a sufficiently large knowledge base. How then can we make it possible for a system to continue to function in the face of a very large number of plausibly useful chunks of knowledge? In response to this question we propose a framework for viewing issues of knowledge indexing and retrieval, a framework that includes what appears to be a useful perspective on the concept of a strategy. We view strategies as a means of controlling invocation in situations where traditional selection mechanisms become ineffective. We examine ways to effect such control, and describe meta-rules, a means of specifying strategies which offers a number of advantages. We consider at some length how and when it is useful to reason about control, and explore the advantages meta-rules offer for doing this.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report describes a paradigm for combining associational and causal reasoning to achieve efficient and robust problem-solving behavior. The Generate, Test and Debug (GTD) paradigm generates initial hypotheses using associational (heuristic) rules. The tester verifies hypotheses, supplying the debugger with causal explanations for bugs found if the test fails. The debugger uses domain-independent causal reasoning techniques to repair hypotheses, analyzing domain models and the causal explanations produced by the tester to determine how to replace faulty assumptions made by the generator. We analyze the strengths and weaknesses of associational and causal reasoning techniques, and present a theory of debugging plans and interpretations. The GTD paradigm has been implemented and tested in the domains of geologic interpretation, the blocks world, and Tower of Hanoi problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

My work is broadly concerned with the question "How can designs bessynthesized computationally?" The project deals primarily with mechanical devices and focuses on pre-parametric design: design at the level of detail of a blackboard sketch rather than at the level of detail of an engineering drawing. I explore the project ideas in the domain of single-input single-output dynamic systems, like pressure gauges, accelerometers, and pneumatic cylinders. The problem solution consists of two steps: 1) generate a schematic description of the device in terms of idealized functional elements, and then 2) from the schematic description generate a physical description.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes ARLO, a representation language loosely modelled after Greiner and Lenant's RLL-1. ARLO is a structure-based representation language for describing structure-based representation languages, including itself. A given representation language is specified in ARLO by a collection of structures describing how its descriptions are interpreted, defaulted, and verified. This high level description is compiles into lisp code and ARLO structures whose interpretation fulfills the specified semantics of the representation. In addition, ARLO itself- as a representation language for expressing and compiling partial and complete language specifications- is described and interpreted in the same manner as the language it describes and implements. This self-description can be extended of modified to expand or alter the expressive power of ARLO's initial configuration. Languages which describe themselves like ARLO- provide powerful mediums for systems which perform automatic self-modification, optimization, debugging, or documentation. AI systems implemented in such a self-descriptive language can reflect on their own capabilities and limitations, applying general learning and problem solving strategies to enlarge or alleviate them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental problem in artificial intelligence is obtaining coherent behavior in rule-based problem solving systems. A good quantitative measure of coherence is time behavior; a system that never, in retrospect, applied a rule needlessly is certainly coherent; a system suffering from combinatorial blowup is certainly behaving incoherently. This report describes a rule-based problem solving system for automatically writing and improving numerical computer programs from specifications. The specifications are in terms of "constraints" among inputs and outputs. The system has solved program synthesis problems involving systems of equations, determining that methods of successive approximation converge, transforming recursion to iteration, and manipulating power series (using differing organizations, control structures, and argument-passing techniques).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objects move, collide, flow, bend, heat up, cool down, stretch, compress and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand common sense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative Process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called quantity space. This report describes the basic concepts of Qualitative Process theory, several different kinds of reasoning that can be performed with them, and discusses its impact on other issues in common sense reasoning about the physical world, such as causal reasoning and measurement interpretation. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string but not push with it. This report also describes GIZMO, an implemented computer program which uses Qualitative Process theory to make predictions and interpret simple measurements. The represnetations and algorithms used in GIZMO are described in detail, and illustrated using several examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis confronts the nature of the process of learning an intellectual skill, the ability to solve problems efficiently in a particular domain of discourse. The investigation is synthetic; a computational performance model, HACKER, is displayed. Hacker is a computer problem-solving system whose performance improves with practice. HACKER maintains performance knowledge as a library of procedures indexed by descriptions of the problem types for which the procedures are appropriate. When applied to a problem, HACKER tries to use a procedure from this "Answer Library". If no procedure is found to be applicable, HACKER writes one using more general knowledge of the problem domain and of programming techniques. This new program may be generalized and added to the Answer Library.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planner is a formalism for proving theorems and manipulating models in a robot. The formalism is built out of a number of problem-solving primitives together with a hierarchical multiprocess backtrack control structure. Statements can be asserted and perhaps later withdrawn as the state of the world changes. Under BACKTRACK control structure, the hierarchy of activations of functions previously executed is maintained so that it is possible to revert to any previous state. Thus programs can easily manipulate elaborate hypothetical tentative states. In addition PLANNER uses multiprocessing so that there can be multiple loci of changes in state. Goals can be established and dismissed when they are satisfied. The deductive system of PLANNER is subordinate to the hierarchical control structure in order to maintain the desired degree of control. The use of a general-purpose matching language as the basis of the deductive system increases the flexibility of the system. Instead of explicitly naming procedures in calls, procedures can be invoked implicitly by patterns of what the procedure is supposed to accomplish. The language is being applied to solve problems faced by a robot, to write special purpose routines from goal oriented language, to express and prove properties of procedures, to abstract procedures from protocols of their actions, and as a semantic base for English.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We will take the view that the end result of problem solving in some world should be increased expertness. In the context of computers, increasing expertness means writing programs. This thesis is about a process, reasoning by analogy that writes programs. Analogy relates one problem world to another. We will call the world in which we have an expert problem solver the IMAGE world, and the other world the DOMAIN world. Analogy will construct an expert problem solver in the domain world using the image world expert for inspiration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work reported here lies in the area of overlap between artificial intelligence software engineering. As research in artificial intelligence, it is a step towards a model of problem solving in the domain of programming. In particular, this work focuses on the routine aspects of programming which involve the application of previous experience with similar programs. I call this programming by inspection. Programming is viewed here as a kind of engineering activity. Analysis and synthesis by inspection area prominent part of expert problem solving in many other engineering disciplines, such as electrical and mechanical engineering. The notion of inspections methods in programming developed in this work is motivated by similar notions in other areas of engineering. This work is also motivated by current practical concerns in the area of software engineering. The inadequacy of current programming technology is universally recognized. Part of the solution to this problem will be to increase the level of automation in programming. I believe that the next major step in the evolution of more automated programming will be interactive systems which provide a mixture of partially automated program analysis, synthesis and verification. One such system being developed at MIT, called the programmer's apprentice, is the immediate intended application of this work. This report concentrates on the knowledge are of the programmer's apprentice, which is the form of a taxonomy of commonly used algorithms and data structures. To the extent that a programmer is able to construct and manipulate programs in terms of the forms in such a taxonomy, he may relieve himself of many details and generally raise the conceptual level of his interaction with the system, as compared with present day programming environments. Also, since it is practical to expand a great deal of effort pre-analyzing the entries in a library, the difficulty of verifying the correctness of programs constructed this way is correspondingly reduced. The feasibility of this approach is demonstrated by the design of an initial library of common techniques for manipulating symbolic data. This document also reports on the further development of a formalism called the plan calculus for specifying computations in a programming language independent manner. This formalism combines both data and control abstraction in a uniform framework that has facilities for representing multiple points of view and side effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Act2 is a highly concurrent programming language designed to exploit the processing power available from parallel computer architectures. The language supports advanced concepts in software engineering, providing high-level constructs suitable for implementing artificially-intelligent applications. Act2 is based on the Actor model of computation, consisting of virtual computational agents which communicate by message-passing. Act2 serves as a framework in which to integrate an actor language, a description and reasoning system, and a problem-solving and resource management system. This document describes issues in Act2's design and the implementation of an interpreter for the language.