7 resultados para Unified Model Reference
em Massachusetts Institute of Technology
Resumo:
Caches are known to consume up to half of all system power in embedded processors. Co-optimizing performance and power of the cache subsystems is therefore an important step in the design of embedded systems, especially those employing application specific instruction processors. In this project, we propose an analytical cache model that succinctly captures the miss performance of an application over the entire cache parameter space. Unlike exhaustive trace driven simulation, our model requires that the program be simulated once so that a few key characteristics can be obtained. Using these application-dependent characteristics, the model can span the entire cache parameter space consisting of cache sizes, associativity and cache block sizes. In our unified model, we are able to cater for direct-mapped, set and fully associative instruction, data and unified caches. Validation against full trace-driven simulations shows that our model has a high degree of fidelity. Finally, we show how the model can be coupled with a power model for caches such that one can very quickly decide on pareto-optimal performance-power design points for rapid design space exploration.
Resumo:
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
Resumo:
This thesis investigates the problem of controlling or directing the reasoning and actions of a computer program. The basic approach explored is to view reasoning as a species of action, so that a program might apply its reasoning powers to the task of deciding what inferences to make as well as deciding what other actions to take. A design for the architecture of reasoning programs is proposed. This architecture involves self-consciousness, intentional actions, deliberate adaptations, and a form of decision-making based on dialectical argumentation. A program based on this architecture inspects itself, describes aspects of itself, and uses this self-reference and these self-descriptions in making decisions and taking actions. The program's mental life includes awareness of its own concepts, beliefs, desires, intentions, inferences, actions, and skills. All of these are represented by self-descriptions in a single sort of language, so that the program has access to all of these aspects of itself, and can reason about them in the same terms.
Resumo:
How does a person answer questions about children's stories? For example, consider 'Janet wanted Jack's paints. She looked at the picture he was painting and said 'Those paints make your picture look funny.' The question to ask is 'Why did Janet say that?'. We propose a model which answers such questions by relating the story to background real world knowledge. The model tries to generate and answer important questions about the story as it goes along. Within this model we examine two questions about the story as it goes along. Within this model we examine two problems, how to organize this real world knowledge, and how it enters into more traditional linguistic questions such as deciding noun phrase reference.
Resumo:
We describe a method for modeling object classes (such as faces) using 2D example images and an algorithm for matching a model to a novel image. The object class models are "learned'' from example images that we call prototypes. In addition to the images, the pixelwise correspondences between a reference prototype and each of the other prototypes must also be provided. Thus a model consists of a linear combination of prototypical shapes and textures. A stochastic gradient descent algorithm is used to match a model to a novel image by minimizing the error between the model and the novel image. Example models are shown as well as example matches to novel images. The robustness of the matching algorithm is also evaluated. The technique can be used for a number of applications including the computation of correspondence between novel images of a certain known class, object recognition, image synthesis and image compression.
Resumo:
The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested.
Resumo:
The present success in the manufacture of multi-layer interconnects in ultra-large-scale integration is largely due to the acceptable planarization capabilities of the chemical-mechanical polishing (CMP) process. In the past decade, copper has emerged as the preferred interconnect material. The greatest challenge in Cu CMP at present is the control of wafer surface non-uniformity at various scales. As the size of a wafer has increased to 300 mm, the wafer-level non-uniformity has assumed critical importance. Moreover, the pattern geometry in each die has become quite complex due to a wide range of feature sizes and multi-level structures. Therefore, it is important to develop a non-uniformity model that integrates wafer-, die- and feature-level variations into a unified, multi-scale dielectric erosion and Cu dishing model. In this paper, a systematic way of characterizing and modeling dishing in the single-step Cu CMP process is presented. The possible causes of dishing at each scale are identified in terms of several geometric and process parameters. The feature-scale pressure calculation based on the step-height at each polishing stage is introduced. The dishing model is based on pad elastic deformation and the evolving pattern geometry, and is integrated with the wafer- and die-level variations. Experimental and analytical means of determining the model parameters are outlined and the model is validated by polishing experiments on patterned wafers. Finally, practical approaches for minimizing Cu dishing are suggested.